

SUMMARY OF CURRICULUM

h

T

I

UNDERGRADUATE PROGRAM OF INFORMATIC ENGINEERING

FACULTY OF ENGINEERING UNIVERSITAS NEGERI SURABAYA 2023

SUMMARY OF CURRICULUM undergraduate program in informatic engineering faculty of engineering universitas negeri surabaya

A. OBJECTIVES OF THE DEGREE PROGRAM

Institution Vision and Mission

The vision of Universitas Negeri Surabaya is as follows:

"Excellent in Education Strong in Science"

The mission of Universitas Negeri Surabaya is as follow:

- 1) Organizing education and learning centered on students by using an active learning approach and optimizing the use of technology
- Conducting research in education, natural sciences, social and cultural sciences, arts, and / or sports, and technological development whose findings are beneficial for the development of science and public welfare
- 3) Disseminating science, technology, arts and culture, and sports, and the results of research through community service-oriented towards empowering and civilizing the community
- 4) Realizing Unesa as a center of education, mainly primary and secondary education and a scientific center based on the noble values of national culture
- 5) Organizing an autonomous, accountable, and transparent tertiary education institution to guarantee and improve quality and improve quality continuously.

The vision of the Faculty of Engineering is as follows:

"Excellent in Technology and Vocational Education"

The mission of Faculty of Engineering is as follow:

- 1) Providing quality education that is relevant to the needs of the global job market and the development of science and technology, which refers to the National Standards of Higher Education.
- 2) Improve the quality of educators and education personnel, the quality of facilities and infrastructure to support continuous improvement in the quality of the learning process.
- 3) Develop research in the field of technology and vocational education based on professionalism to be applied in the context of community service and education.

- 4) Build institutions that are healthy, efficient, effective, productive, transparent, accountable, prosperous, and fair.
- 5) Develop cooperation with related national and international institutions on an ongoing basis.
- 6) Produce educational and non-educational staff who are competent, professional, religious, creative, independent, and have the spirit of leadership and are capable of entrepreneurship.

Program Education Outcome (PEO)

The Undergaduate Program in Informatic Engineering aims to produce graduates in the field of Informatic Engineering who have abilities:

- 1) Individuals with profound knowledge in software development and programming. They have developed strong skills in analysis, design, implementation, and maintenance of software systems.
- 2) Individuals who excel in providing technical support and solutions for computer and network issues. They possess strong technical skills, a deep understanding of IT infrastructure, and good communication abilities.
- 3) Individuals who not only have a deep understanding of technology but also strong business skills to establish and manage their own technology ventures. This graduate profile encompasses various aspects that reflect a combination of technological expertise and entrepreneurial spirit.

versus the our Level of National Quantication Framework												
	Graduates have the	Graduates have the	Graduates are	Graduates have the								
	ability to analyze	ability to design,	committed to	ability to think								
	computing issues	implement, and	continually	logically, critically,								
	and apply	evaluate	developing	and systematically in								
	computing	computation-based	themselves	applying knowledge								
	principles and	solutions according	through lifelong	in the field of								
	other relevant	to user needs	learning	informatics/computer								
	disciplines to	through appropriate		science to address								
	identify solutions	approaches		real-world problems								
	for organizations											
PEO-1	S	S	S	S								
PEO-2	S	S	S	S								
PEO-3	S	S	S	S								
PEO-4	S	S	S	S								

Table 1. The objective of The Undergraduate Program in Informatic Engineeringversus the 6th Level of National Qualification Framework

S-Strong, M-Moderate

Program Learning Outcomes (PLO)

The Undergraduate Program in Informatic Engineering sets the Program Learning Outcomes (PLO) for the graduates as follows:

ASPECTS	PLO	CODE
KNOWLEDGE	Capable of analyzing complex computing issues to	KNO-1
	identify solutions for technology project management in	
	the field of computer science/informatics, considering	
	insights from the development of transdisciplinary	
	knowledge.	
	Capable of designing and simulating relevant multi-	KNO-2
	platform technology applications based on theoretical	
	concepts in the field of computer science/informatics to	
	meet industry and societal needs.	
	Able to apply understanding of computer system	KNO-3
	functioning to address issues in information technology.	
SKILL	Possesses teamwork skills.	SKI-1
	Capable of communicating the implications of research	
	results in the development or implementation of	SKI-2
	information technology.	
COMPETENCY	Capable of analyzing, designing, building, and	COM-1
	evaluating user interfaces and interactive applications	
	based on user needs and transdisciplinary knowledge	
	development.	
	Ability to design, implement, and evaluate multi-	COM-2
	platform computing-based solutions that meet	
	organizational needs.	
	Capable of implementing computing requirements by	COM-3
	considering various appropriate methods/algorithms.	
ATTITUDE AND	Committed to maintaining discipline in both societal	SOC-1
SOCIAL	and national contexts	
	Demonstrates professional behavior through adherence	SOC-2
	to professional ethics, the ability to collaborate in	
	multidisciplinary teams, understanding of lifelong	
	learning concepts, and positive responses to social	
	issues and technological developments (SNDIKTI).	

Table 2. PLO of Undergraduate Program of Informatic Engineering

	0 0	0	0	
	PEO-1	PEO-2	PEO-3	PEO-4
KNO-1	S	S	S	S
KNO-2	S	S	S	S
KNO-3	S	S	S	S
SK-1	S	S	S	S
SK-2	S	S	S	S
COM-1	S	S	S	S
COM-2	S	S	S	S
COM-3	S	S	S	S
SOC-1	S	S	S	S
SOC-2	S	S	S	S

 Table 3. Correlation between the Objective of the Undergraduate Program in Informatic

 Engineering and the Program Learning Outcomes

S-Strong, M-Moderate

B. PROGRAM STRUCTURE

The Curriculum

The curriculum has reviewed and updated every four years to adapt the evolving dynamics of the outside world while maintaining a significant focus on core Informatics Engineering components. The current curriculum is designated as Curriculum 2023. The development of the curriculum is centered around:

- 1) Indonesian National Qualification Framework (KKNI) and National Standards for Higher Education.
- 2) 21st century skills needed, namely critical thinking and problem solving, creative and innovative, communication, and collaboration.
- Association for Computing Machinery (ACM), Institute of Electrical Electronics Engineers-Computer Society (IEEE-CS), and Association for Advancement of Artificial Intelligence (AAAI) 2023.
- 4) Association of Informatics and Computer Universities (APTIKOM).

Based on the document "Computer Science Curricula 2023 Version Beta March 2023" have designed by the Association for Computing Machinery (ACM), Institute of Electrical Electronics Engineers-Computer Society (IEEE-CS), and Association for Advancement of Artificial Intelligence (AAAI), as its name suggests, the CS discipline has considered computer science as a central unit of analysis for research and teaching from the beginning. Commonly, "computer science" has defined as the study of algorithms, data structures, and the principles behind computing systems to solve problems and manipulate information efficiently. The computer science areas are:

- 1) Software, consisting of the knowledge areas Software Development Fundamentals (SDF), Algorithms and Complexity (AL), Foundations of Programming Languages (FPL) and Software Engineering (SE).
- Systems, consisting of some of the following knowledge areas: Systems Fundamentals (SF), Architecture and Organization (AR), Operating Systems (OS), Parallel and Distributed Computing (PDC), Networking and Communication (NC), Security (SEC) and Data Management (DM).
- 3) Applications, consisting of some of the following knowledge areas: Graphics and Interactive Techniques (GIT), Artificial Intelligence (AI), Specialized Platform Development (SPD), Human-Computer Interaction (HCI), Security (SEC) and Data Management (DM).
- 4) Theoretical Foundations of Computer Science, applicable to theoretical exploration of all the knowledge areas, such as pursued in preparation for graduate studies.

In other hand, competency areas are also correlated with skill levels. These pre-established skill levels play a crucial role as mediators between the knowledge model (encompassing knowledge areas, units, and topics) and the competency model (consisting of competency areas, units, and tasks), as depicted in Figure 1. This linkage serves to contextualize how knowledge is applied within distinct competencies, thereby enhancing the comprehension of the entire framework.

Figure 1. Knowledge Model versus Competency Model Source: Computer Science Curricula 2023

Referring to the APTIKOM Curriculum Guidelines, which adhere to international best practices set forth by ACM and IEEE. Computer science, which emphasizes the ability of individual's ability to design and develop a variety of computing algorithms (theory of computation and algorithms), including:

- a. A very diverse spectrum, from the highly theoretical and algorithmic to the highly applied such as the development of robotics and systems.
- b. Divided into three main sections:
 - i. Focus on the theories and algorithms used in the process of software design and implementation.
 - ii. Focus on the theories and algorithms used in the process and design of hardware systems and their components.
 - iii. Focus on theories and algorithms that are used as mathematical models in solving certain problems.
- c. The curriculum is very thick with knowledge related to logic, math, computation, and algorithms, which in its applied model is stated as mathematics, computing, and algorithms, which in its applied model is expressed in the development of computer programs.

Name Variations: Informatics Engineering, Computer Science, Computational Science, Informatics, Informatics, Computational Mathematics, and so on.

The mechanism of curriculum development of Undergraduate Program of Computer Informatic Engineering (UPIE) is described as follows:

- 1) Forming curriculum development team in charge of producing the draft of UPIE curriculum.
- Doing self-evaluation through analysis of comparative study results, analysis of tracer study results, results of on-going curriculum evaluation, demands of the need in the field, and SWOT analysis.
- 3) Determining the characteristics of UPIE specifications and graduate profile based on the graduate competencies formulated in PEO.
- 4) Determining the PLOs derived from PEO of UPIE.
- 5) Determining study materials (based on scientific trees) and inventory of relevant essential concepts which supports each of the PLO.
- 6) Determining the courses/modules included in the study material and distribution of essential concepts.
- 7) Determining the road map of each PLO achievement by making a map of course pathways that are mutually relevant to support the achievement of each PLO from semester 1 to semester 8.
- 8) Estimation and determination of study load (credit unit) and preparation of course descriptions.
- 9) Determining the staff who teach the courses in accordance with their respective areas of expertise
- 10) Preparing of Module Handbook and Semester Lesson Plans by considering the relevancy of teaching methodology which support PLO achievement and how each of assessment systems (midterm exam, final exam, and assignments) correlates with PLO.

The development processes of the curriculum adhere to several foundational principles of curriculum development. These principles, crucial in shaping the educational framework, are visually represented in Figure 2.

Figure 2. Principles of curriculum development

The Program Learning Outcomes (PLOs) of UPIE has closed align with the specialized learning outcomes outlined for Bachelor degree programs established by ASIIN (SSC-04: Informatics/Computer Science), as depicted in the following table.

SPECIALIST		PLO Code													
COMPETENC ES SSC	KNO-1	KNO-2	KNO-3	KNO-4	SKI-1	SKI-2	SKI-3	SKI-4	COM-1	COM-2	COM-3	SOC-1	SOC-2		
Computer Science															
Special application area (Type 2 only)															
Shares of other specialist disciplines (Type 3 only)															
Mathematical and scientific/techni cal basics															
Other interdisciplinar y basics and															

Table 4. Specialist learning outcomes for Bachelor degree programmes created by ASIIN (SSC-04: Informatics/CS) and UPIE PLO

SPECIALIST		PLO Code												
COMPETENC ES SSC	KNO-1	KNO-2	KNO-3	KNO-4	SKI-1	SKI-2	SKI-3	SKI-4	COM-1	COM-2	COM-3	SOC-1	SOC-2	
transferrable key skills														

C. WORKLOAD AND CREDITS

The learning programme of UPIS uses a semester credit system (CU) where in one academic year it consists of two semesters, each entails 14 weeks. In one semester, the study load of each student ranges from 18 to 20 CU. One credit unit entails three types of activity per week for one semester. These activities are 50 minutes face-to-face (teaching and learning in class), 60 minutes of structured activities outside the classroom, such as doing assignments from lecturers, and 60 minutes of independent activities outside the classroom. Therefore, the student learning load for 1 credit is equivalent to 1.59 ECTS. The maximum total number of credits can be taken by student is 160 credits or equivalent to 254.4 ECTS. In order to graduate from this study programmes, a student should meet a minimum of 144 credits or equivalent to 228.96 ECTS. the calculation of the ECTS value is given as follows:

$$K = \frac{p \times q \times r}{25}$$

where,

K = ECTS value

p = Total credit

q = Total hours per credit

r =Total week per semester

To complete the learning program, students should take 144 credit units (CU) comprising 138 CU compulsory courses and 6 CU elective course.

CU compulsary courses	CU	Note									
CU of compulsary courses	138	The CU courses are distributed into 53 course units distributed into 51 compulsory courses.									
CU of elective courses	6	There are 18 CU from 6 elective courses									
Total	144										

Table 5. Distribution of Credit Units for UPIS Courses/Modules

			,	===;													
NO	CODE	MODULE	CU	ECTS	KNO-1	KNO-2	KNO-3	KNO-4	SKI-1	SKI-2	SKI-3	SKI-4	COM-1	COM-2	COM-3	soc-1	SOC-2
		•	1s	^t Semes	ter												
1	100002003	Pancasila Education	2	3,18									\checkmark				
2	1000002047	Indonesian	2	3,18												\checkmark	
3	1000002018	Mathematics	2	3,18													\checkmark
4	5720103001	Linear Algebra and Matrix	3	4,77	\checkmark				\checkmark								
5	5720103006	Computer Architecture and Organization	3	4,77		√			\checkmark				√				
6	5720103034	Basic Programming	3	4,77	\checkmark		\checkmark			\checkmark							
7	5720102038	Physical, Sports, and Health Education	2	3,18	√				\checkmark				\checkmark				
			2 n	^d Semes	ter												
9	1000002046	Religion	2	3,18					\checkmark					\checkmark		\checkmark	
10	100002033	Citizenship Education	2	3,18					\checkmark					\checkmark			
11	5720103009	Discrete Mathematics	3	4,77			\checkmark					\checkmark			\checkmark		
12	5720103014	Operating System	3	4,77				\checkmark		\checkmark							\checkmark
13	5720102026	Data Structure	2	3,18				\checkmark			\checkmark				\checkmark		
14	5720103069	Digital Literature	3	4,77						\checkmark		\checkmark					
15	5720102031	Professional Ethics	2	3,18			\checkmark				\checkmark					\checkmark	
16	10000202x		2	3,18													\checkmark
		•	3rd	Semest	er1								<u> </u>				
17	5720102013	Human Computer and Interaction	2	3,18			\checkmark			\checkmark				\checkmark			
18	5720103015	Computational Science	3	4,77			\checkmark				\checkmark				\checkmark		
19	5720103033	Object-oriented Programming	3	4,77		\checkmark						V				\checkmark	
20	5720103040	Database	3	4,77	\checkmark							\checkmark					\checkmark
21	5720103046	Artificial Intelligence	3	4,77		\checkmark			\checkmark					\checkmark			
22	5720102078	Computer Networking	2	3,18				\checkmark				\checkmark		\checkmark			
			4 th	Semes	ter												
25	5720103030	Platform-oriented Programming	2	3,18					\checkmark				\checkmark		\checkmark		
26	5720103068	Big Data	3	4,77	\checkmark			\checkmark	\checkmark			\checkmark					
27	5720103042	Software Engineering	3	4,77		\checkmark						\checkmark				1	
28	5720102045	Digital Image Processing	2	3,18	\checkmark				\checkmark								
29	5720103005	Statistics	3	4,77					\checkmark					\checkmark			
30	5720102017	Otomata Theorem	2	3,18		\checkmark					\checkmark						
	-	-	5 th	Semes	ter												
32	5720103080	Software Analysis and Design	3	4,77			√			\checkmark			1				
33	5720103071	Internet of Things	3	4,77												[
34	5720102070	Data and Information Security	3	4,77										\checkmark			
35	5720102062	Research Methodology	3	4,77			\checkmark			\checkmark							
36	5720103024	Entrepreneurship	3	4,77		\checkmark					\checkmark			\checkmark			
37	572010xxxx	Software Project Management	3	4,77			\checkmark			\checkmark			1				

Table 6. Mapping of the Courses that Support the Program Learning Outcomes (PLO)

NO	CODE	MODULE	CU	ECTS	KNO-1	KNO-2	KNO-3	KNO-4	SKI-1	SKI-2	SKI-3	SKI-4	COM-1	COM-2	COM-3	SOC-1	SOC-2
38	572010 xxxx	Machine Learning	3	4,77				\checkmark			\checkmark		\checkmark				
			6 th	Semes	ter												
39		Internship Program Planning	2	4,77			\checkmark			\checkmark							
40		Internship Program Evaluation	2	4,77				≮				\checkmark					
41		Enrichment Program 1	16	25,4 4	\checkmark			\checkmark				V		\checkmark			
			7 th	Semes	ter												
42		Internship Program Planning	2	4,77			\checkmark				\checkmark			\checkmark			
43		Internship Program Evaluation	2	4,77	\checkmark				\checkmark								
44		Enrichment Program 2	16	25,4 4	\checkmark	\checkmark				√			\checkmark				
45	1000002104	Seminar	2	3,18				\checkmark			\checkmark						
	8 th Semester																
46	5720106055	Thesis	4	6,36			\checkmark				\checkmark						

 Table 7. List of Elective Modules in 5th Semester

NO	CODE	MODULE	CU	ECTS	KNO-1	KNO-2	KNO-3	KNO-4	SKI-1	SKI-2	SKI-3	SKI-4	COM-1	COM-2	COM-3	SOC-1	SOC-2
1		IT Service Management	3	4,77													
2		IT Audit	3	4,77													
3		Enterprise Information Systems	3	4,77													
4		Mobile Programming	3	4,77													
5		Business Intelligence	3	4,77													
6		Decision Support Systems	3	4,77													

Table 8.	List of Enrichmen	t Program 1	l in 6 th	Semester
----------	-------------------	-------------	----------------------	----------

NO	CODE	MODULE	CU	ECTS	CSP	CIN	CRS	CEN	CIS
1		Community Project Implementation	4	6,36	\checkmark				
2		Community Project Design	4	6,36	\checkmark				
3		Employability Skills	4	6,36	\checkmark				
4		Entrepreneurial Skills	4	6,36	\checkmark			\checkmark	
5		Experience in Industry	4	6,36		\checkmark			
6		Requirement Analysis	4	6,36		\checkmark			
7		Solution Design	4	6,36		\checkmark	\checkmark		
8		Business Communication	4	6,36		\checkmark	\checkmark		
9		Research Experience	4	6,36			\checkmark		

NO	CODE	MODULE	CU	ECTS	CSP	CIN	CRS	CEN	CIS
10		Scientific Writing	4	6,36			\checkmark		
11		Venture Initiation	4	6,36				\checkmark	
12		Product Development Process	4	6,36				\checkmark	
13		Business Planning and Development	4	6,36				\checkmark	
14		Course Certification	4	6,36					\checkmark
15		Technical Skill Enrichment	4	6,36					\checkmark
16		Industrial Project	4	6,36					\checkmark
17		Soft Skill Enrichment	4	6,36					\checkmark

Table 9. List of Enrichment Program 2 in 7th Semester

NO	CODE	MODULE	CU	ECTS	CSP	CIN	CRS	CEN	CIS
1		Community Project Implementation in Information System	4	6,36	\checkmark				
2		Community Project Design in Information System	4	6,36	\checkmark				
3		Employability Skills in Information System	4	6,36	\checkmark				
4		Entrepreneurial Skills in Information System	4	6,36	\checkmark			\checkmark	
5		Experience in Information System Industry	4	6,36		\checkmark			
6		Requirement Analysis in Information System	4	6,36		\checkmark			
7		Solution Design in Information System	4	6,36		\checkmark	\checkmark		
8		Business Communication in Information System	4	6,36		\checkmark	\checkmark		
9		Research Experience in Information System	4	6,36			\checkmark		
10		Scientific Writing in Information System	4	6,36			\checkmark		
11		Venture Initiation in Information System	4	6,36				\checkmark	
12		Product Development Process in Information System	4	6,36				\checkmark	
13		Business Planning and Development in Information System	4	6,36				\checkmark	
14		Course Certification in Information System	4	6,36					\checkmark
15		Technical Skill Enrichment in Information System	4	6,36					\checkmark
16		Industrial Project in Information System	4	6,36					\checkmark
17		Soft Skill Enrichment in Information System	4	6,36					\checkmark

