MODULE HANDBOOK

Module Name:	Mathematical Statistic
Module Level:	Sarjana (S-1) / Bachelor
Abbreviation, if applicable:	
Sub-heading, if applicable:	-
Course included in the module, if applicable:	-
Semester/term:	8/ Fourth year
Module Coordinator(s):	A'yunin Sofro, Ph.D
Lecturer(s):	A'yunin Sofro. Ph.D
Language:	Indonesia
Classification within the curriculum:	Compulsory course/ elective studies
Teaching format/class hours per week during the semester	Teaching format: lectures, tutorial assignment, and individual study. 3×170 minutes $=510$ minutes $=8.5 .6$ hours lectures
Workload:	15 weeks per semester consisting of: >2 hours lectures (3×50 minutes) per week, >2 hours tutorial assignments (3×60 minutes) per week, >2 hours individual study (3×60 minutes) per week, Total workload : $14 \times 3 \times 170$ minutes $=7,140$ minutes $=4.76$ ECTS $*$
Credit Point:	3
Requirements:	Probability and Statistics
Learning Goals:	Knowledge CLO-1: Identify and explain solving simple problems using the concepts and properties of sampling distribution, methods for estimating parameters (moment method, maximum likelihood function, bayesian estimator) and hypothesis testing theory Skill CLO-3: Use the concepts and properties of sampling distribution, methods for estimating parameters (moment method, maximum likelihood function, bayesian estimator) and

	hypothesis testing theory mathematical problems.		
Content:	Sampling Distribution, Methods For Estimating Parameters (Moment Method, Maximum Likelihood Function, Bayesian Estimator) And Hypothesis Testing Theory		
Study/exam achievements	Students are considered competent and pass if the final score calculated from the score of midterm exam, assignments, participation, and final exam is at least 55 or C. Final score is calculated as follows: 20% midterm exam $+30 \%$ assignments $+20 \%$ participation + 30% final exam Final index is defined as follow:		
	Index	Converted Score	Score Range
	A	4.00	$85 \leq A \leq 100$
	A-	3.75	$80 \leq A-<85$
	B+	3.50	$75 \leq B+<80$
	B	3.00	$70 \leq B<75$
	B-	2.75	$65 \leq B-<70$
	C+	2.50	$60 \leq C+<65$
	C	2.00	$55 \leq C<60$
	D	1.00	$40 \leq D<55$
	E	0.00	$0 \leq E<40$
Forms of Media	Slides and LCD projectors, whiteboard		
Literature	[1] Hogg, R.V.\& Craig.A.T. 2012. Introduction to Mathematical Statistics 7th Edition. New York: MacMilan Publishing Co. Inc. [2] Walpole, Myers, 2011. Probability \& Statistics for Engineers and Scientists, 9th Edition, Pearson Education, Inc. USA		
Note	*Total hours per 1 credit in 1 semester $=\{(1$ credit x 170 minutes x 14 weeks)/60 minutes $\}=39,67$ hours. Each ECTS equals with 25 hours therefore 1 credit in 1 semester equals 1,59 ECTS.		

