MODULE HANDBOOK

Module Name:	Elementary Number Theory			
Module Level:	Sarjana (S-1) / Bachelor			
Abbreviation, if				
applicable:				
Sub-heading, if	-			
applicable:				
Course included in the	-			
module, if applicable:				
Semester/term:	3/ Second year			
Module Coordinator(s):	Dwi Nur Yunianti, M.Sc			
Lecturer(s):	Dr. R. Sulaiman, M.Si			
	Dwi Nur Yunianti, M.Sc			
	Rudianto Artiono, M.Si			
Language:	Indonesia			
Classification within	Compulsory course/ elective studies			
the curriculum:				
Teaching format/class	Teaching format: lectures, tutorial assignment, and individual			
hours per week during	study. 2×170 minutes = 340 minutes = 5.6 hours lectures			
the semester				
Workload:	15 weeks per semester consisting of:			
	> 2 hours lectures (2 x 50 minutes) per week,			
	\triangleright 2 hours tutorial assignments (2 x 60 minutes) per week,			
	> 2 hours individual study (2 x 60 minutes) per week,			
	Total workload : 14x2x170 minutes = 4,760 minutes = 3.17 ECTS*			
Credit Point:	2			
Requirements:	Foundation of Mathetatics			
Learning Goals:	Knowledge			
	CLO-1: Identify and explain solving simple problems using the			
	concepts and properties of division, number base, prime			
	numbers, FPB and KPK, congruence, residual system,			
	Euler's theorem, linear congruence, simultaneous linear			
	congruence system, congruence system linear			
	CLO-2: Capable of thinking in a structured manner, reasoning,			
	proving simply the characteristics of division, number			
	base, prime numbers, FPB and KPK, congruence,			
	residual system, Euler's theorem, linear congruence,			

		simultane	eous linear con	gruence system, linea	
	congruence system.				
	Skill				
	CLO-3: Use the concepts and properties of division, number base,				
	prime numbers, FPB and KPK, congruence, residual				
	system, Euler's theorem, linear congruence, simultaneous				
	solving more general mathematical problems				
Content:	Divisible, number base, prime numbers, FPB and LCM.				
	congruence, residual system, Euler's theorem, linear congruence,				
	simultaneous linear congruence system, linear congruence system.				
Study/exam	> Students are considered competent and pass if the final score				
achievements	calculated from the score of midterm exam, assignments,				
	participation, and final exam is at least 55 or C.				
	Final score is calculated as follows:				
	> 20% midterm exam + 30% assignments + 20% participation +				
	30% final exam				
	Final index is defined as follow:				
		Index	Converted Score	Score Range	
		А	4.00	85≤A≤100	
		A-	3.75	80≤ <i>A</i> − <85	
		B+	3.50	75≤ <i>B</i> + <80	
		В	3.00	70≤ <i>B</i> <75	
		B-	2.75	65≤ <i>B</i> − <70	
		C+	2.50	60 <i>≤C</i> + <65	
		С	2.00	55≤ <i>C</i> <60	
		D	1.00	40 ≤ <i>D</i> <55	
		E	0.00	$0 \leq E < 40$	
Forms of Media	Slides and LCD projectors, whiteboard				
Literature	[1]	Rosen, K.	H. 2018. Elementary	Number Theory and its	
	Application (6th edition). New York: Addison – Wesley				
	Publishing Company. [2] Sukirman, 2005, Pengantar Teori Bilangan, Vogyakarta:				
	Hanggar Kreator Yogyakarta				
	[3] Niven, Ivan, Herbert S. Zuckerman, Hugh L.				
	Montgomery. 1991. An Introduction to The Theory of				
		Numbers.	Canada.John Wiley	& Sons, Inc	

Note	*Total hours per 1 credit in 1 semester={(1 credit x 170 minutes x
	14 weeks)/60 minutes = 39,67 hours.
	Each ECTS equals with 25 hours therefore 1 credit in 1 semester
	equals 1,59 ECTS.