MODULE HANDBOOK

Module Name:	Real Analysis I
Module Level:	Sarjana (S-1) / Bachelor
Abbreviation, if	8420203013
applicable:	
Sub-heading, if	-
applicable:	
Course included in the	-
module, if applicable:	
Semester/term:	4/ Second year
Module Coordinator(s):	Prof. Dr. Manuharawati, M.Si
Lecturer(s):	Prof. Dr. Manuharawati, M.Si
	Dwi Nur Yunianti, S.Si., M.Sc.
	Muhammad Jakfar, S.Si., M.Si.
Language:	Indonesia
Classification within	Compulsory course/ elective studies
the curriculum:	
Teaching format/class	Teaching format: lectures, tutorial assignment, and individual
hours per week during	study. $3 \times 170 \text{ minutes} = 510 \text{ minutes} = 8.5 \text{ hours lectures}$
the semester	
Workload:	15 weeks per semester consisting of:
	> 2.5 hours lectures (3 x 50 minutes) per week,
	> 3 hours tutorial assignments (3 x 60 minutes) per week,
	> 3 hours individual study (3 x 60 minutes) per week,
	Total workload : 14x3x170 minutes = 7,140 minutes = 4.76 ECTS*
Credit Point:	3
Requirements:	Foundations of Mathematics
Learning Goals:	Knowledge (KNO-1)
	CLO-1: Demonstrate the ability to think structured, reasoned,
	proof based on deductive-axiomatic analysis, and proof of
	mathematical induction; understand real number systems, rational
	and irrational numbers, absolute values, Neighborhood of points,
	the completeness of \mathbb{R} , open and closed sets; as well as knowledge
	of sequences, convergence of sequences, the principle of the $K-\epsilon$
	game, sequences tails and monotonous sequences, sub-sequences,
	Bolzano-Weierstrass theorem, Cauchy's criterion, contractive
	sequences, proper divergent sequences, and number series.
	Skill (SKI-2)

	CLO-2: use basic mathematical principles (regarding the structure				
	of real numbers, real number topology, and real number sequences)				
	in solvi	ng problem	IS.		
Content:	Real number systems (algebra of real numbers and their properties, rational and irrational numbers, sequences of real numbers, and				
	their n	roperties	absolute values	Neighborhood of	noints
	suprem	um and infi	imum of a set and th	eir properties, interv	vals and
	their pro	operties), to	pology on real lines	(specific points of a	set and
	their pr	operties, o	pen and closed sets	and their properties	es), real
	number	sequences	s (sequence limits,	sequence limit pro	operties,
	sequenc	e tails,	monotonous seque	ences, subset seq	luences,
	diverge	nt sequence	es, Cauchy criterion,	, contractive sequend	ce)
Study/exam	Students are considered competent and pass if the final score				
actine venients	calculated from the score of midterm exam, assignments, participation and final exam is at least $55 \text{ or } C$				
	→ Fin	al score is	calculated as follow	icast 55 of C.	
	> 200	% midterm	exam + 30% assign	s. ments + 20% partici	nation +
	30%	6 final exa	m	filents + 2070 purifer	
	➤ Fin	al index is	defined as follow:		
		Index	Converted Score	Score Range	
		A	4.00	85≤A≤100	
		A-	3.75	80≤ <i>A</i> − <85	
		B+	3.50	75≤ <i>B</i> +<80	
		В	3.00	7 0≤ <i>B</i> <75	
		B-	2.75	65≤ <i>B</i> − <70	
		C+	2.50	60 ≤ <i>C</i> + <65	
		С	2.00	55≤ <i>C</i> <60	
		D	1.00	40 ≤ <i>D</i> <55	
		Е	0.00	0 ≤ <i>E</i> <40	
Forms of Media	Slides a	nd LCD pr	ojectors, whiteboard	1	
Literature	 [1] Bartle, R.G. Sherbert Donald R. 2011. Introduction to Real Analysis (Fourth Edition), New York, John Wiley and Sons. [2] Manuharawati. 2014. Analisis Real. Zifatama: Surabaya. 				Real
					Sons.
					'a.
Note	*Total hours per 1 credit in 1 semester={(1 credit x 170 minutes x				
	14 week	xs)/60 minu	ites}=39,67 hours.		

Each ECTS equals with 25 hours therefore 1 credit in 1 semester
equals 1,59 ECTS.