MODULE HANDBOOK

Module Name:	Real Analysis II				
Module Level:	Sarjana (S-1) / Bachelor				
Abbreviation, if	8420203012				
applicable:					
Sub-heading, if	-				
applicable:					
Course included in the	-				
module, if applicable:					
Semester/term:	8/ Fourth year				
Module Coordinator(s):	Prof. Dr. Manuharawati, M.Si				
Lecturer(s):	Prof. Dr. Manuharawati, M.Si				
	Dwi Nur Yunianti, S.Si., M.Sc.				
	Muhammad Jakfar, S.Si., M.Si.				
Language:	Indonesia				
Classification within	Compulsory course/ elective studies				
the curriculum:					
Teaching format/class	Teaching format: lectures, tutorial assignment, and individual				
hours per week during	study. $3 \times 170 \text{ minutes} = 510 \text{ minutes} = 8.5 \text{ hours lectures}$				
the semester					
Workload:	15 weeks per semester consisting of:				
	> 2.5 hours lectures (3 x 50 minutes) per week,				
	➤ 3 hours tutorial assignments (3 x 60 minutes) per week,				
	> 3 hours individual study (3 x 60 minutes) per week,				
	Total workload : 14x3x170 minutes = 7,140 minutes = 4.76 ECTS*				
Credit Point:	3				
Requirements:	Real Analysis I (8420203012)				
Learning Goals:	Knowledge (KNO-1)				
	CLO-1: Demonstrate the ability to think structured, reasoned,				
	proof based on deductive-axiomatic analysis, and proof of				
	mathematical induction; understand the concept of regular and				
	uniform continuity in the real function, the compactness of a set,				
	the derivative of the real function at a point, the real metric space				
	and its topology, and the Riemann integral. Skill (SKI-2)				
	CLO-2: use basic mathematical principles (regarding regular and				
	uniform continuity in the real function, the compactness of a set,				

		the derivative of the real function at a point, the real metric space and its topology, and the Riemann integral) in solving problems.					
Content:	a real fu a set), cu real me	Continuity of a real function (the concept of ordinary continuity of a real function at a point, uniform continuity of a real function on a set), compactness of a set, derivative of a real function at a point, real metric space and its topology, Riemann's integral and its application in solving related problems					
Study/exam achievements	cald par ➤ Fin ➤ 209 309	 20% midterm exam + 30% assignments + 20% participation + 30% final exam 					
		Index	Converted Score	Score Range			
		A	4.00	85≤A≤100			
		A-	3.75	80≤ <i>A</i> − <85			
		B+	3.50	75 ≤ <i>B</i> + <80			
		В	3.00	70 ≤ <i>B</i> <75			
		B-	2.75	65≤ <i>B</i> − <70			
		C+	2.50	60 ≤ <i>C</i> + <65			
		С	2.00	55≤ <i>C</i> <60			
		D	1.00	4 0≤ <i>D</i> <55			
		E	0.00	$0 \leq E < 40$			
Forms of Media	Slides a	Slides and LCD projectors, whiteboard					
Literature	Ana	 [1] Bartle, R.G. Sherbert Donald R. 2011. Introduction to Real Analysis (Fourth Edition), New York, John Wiley and Sons. [2] Manuharawati. 2014. Analisis Real. Zifatama: Surabaya. 					
Note	14 week Each E0	 *Total hours per 1 credit in 1 semester={(1 credit x 170 minutes x 14 weeks)/60 minutes}=39,67 hours. Each ECTS equals with 25 hours therefore 1 credit in 1 semester equals 1,59 ECTS. 					