MODULE HANDBOOK

Module Name:	Number Theory				
Module Level:	Sarjana (S-1) / Bachelor				
Abbreviation, if	8420203221				
applicable:					
Sub-heading, if	-				
applicable:					
Course included in the	-				
module, if applicable:					
Semester/term:	3/ Second year				
Module Coordinator(s):	Dr. R. Sulaiman, M.Si				
Lecturer(s):	Dr. R. Sulaiman, M.Si				
	Dr. agung Lukito, M.S.				
Language:	Indonesia				
Classification within	Compulsory course/ elective studies				
the curriculum:					
Teaching format/class	Teaching format: lectures, tutorial assignment, and individual				
hours per week during	study. $3 \ge 170$ minutes = 510 minutes = 8.5 hours lectures				
the semester					
Workload:	15 weeks per semester consisting of:				
	> 2.5 hours lectures (3 x 50 minutes) per week,				
	\succ 3 hours tutorial assignments (3 x 60 minutes) per week,				
	➢ 3 hours individual study (3 x 60 minutes) per week,				
	Total workload : $14x3x170$ minutes = 7,140 minutes = 4.76 ECTS*				
Credit Point:	3				
Requirements:	Elementary Number Theory				
Learning Goals:	Knowledge (KNO-1)				
	CLO-1: Able to identify and explain solving simple problems				
	using The concepts of number include primitive roots and				
	indices, linear congruence systems, quadratic				
	congruence, and fractions				
	Skill (SKI-2)				
	CLO-2: Able to use the concepts and properties of number include				
	primuve roots and indices, linear congruence systems,				
	quadratic congruence, and fractions in solving more				
Contont	The concerts of number include primitive roots and indices linear				
Content:	and the concepts of number include primitive roots and indices, linear				
	congruence systems, quadratic congruence, and fractions.				

Study/exam	> Students are considered competent and pass if the final score						
achievements	calculated from the score of midterm exam, assignments,						
	participation, and final exam is at least 55 or C.						
	Final score is calculated as follows:						
	20% midterm exam + 30% assignments + 20% participation +						
	30% final exam						
	Final index is defined as follow:						
		Index	Converted Score	Score Range			
		А	4.00	85≤A≤100			
		A-	3.75	80≤ <i>A</i> − <85			
		B+	3.50	75≤ <i>B</i> +<80			
		В	3.00	70 ≤ <i>B</i> <75			
		B-	2.75	65≤ <i>B</i> − <70			
		C+	2.50	60≤ <i>C</i> +<65			
		С	2.00	55≤ <i>C</i> <60			
		D	1.00	40 ≤ <i>D</i> <55			
		E	0.00	$0 \leq E < 40$			
Forms of Media	Slides and LCD projectors, whiteboard						
Literature	[1] Rosen, K. H. 2018. Elementary Number Theory and its						
	Application (6th edition). New York: Addison – Wesley						
	Publishing Company. [2] Niven Ivan Herbert S. Zuckerman, Hugh I						
	Montgomery, 1991. An Introduction to The Theory of						
	Numbers. Canada.John Wiley & Sons, Inc						
	[3] Grifin, Harriet. 1954. Elementary Theory of Number.						
	McGraw-Hill Book Co. Inc.						
Note	*Total hours per 1 credit in 1 semester={(1 credit x 170 minutes x						
	14 weeks)/60 minutes}=39,67 hours.						
	Each ECTS equals with 25 hours therefore 1 credit in 1 semester						
	equals 1,59 ECTS.						