PORTFOLIO FOR GEOPHYSICAL METHODS COURSE

SEMESTER 4 ACADEMIC YEAR 2019-2020

Course Coordinator: Prof. Tjipto Prastowo, Ph.D

PHYSICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES THE STATE UNIVERSITY OF SURABAYA 2021

TABLE OF CONTENT

Cover Page	1
TABLE OF CONTENT	2
A. SEMESTER LEARNING ACTIVITY PLAN	3
A.1 COURSE IDENTITY	3
A.2 COURSE TOPICS	4
A.3 COURSE PROGRAM	6
A.4 MAPPING OF LEARNING OUTCOME-COURSE OUTCOME	16
A.4.1 Program Learning Outcome (PLO) of UPP	16
A.4.2 Program Educational Objective (PEO) of UPP	17
A.4.3 Mapping of PLO-PEO	17
B. COURSE ASSESSMENT	18
B.1 ASSESSMENT RUBRIC	18
B.2 ASSESSMENT SYSTEM	18
B.3 WEIGHT DISTRIBUTION OF ASSESSMENT	18
B.4 STUDENT GRADE SYSTEM	19
C. COURSE DEVELOPMENT	20
C.1 A BRIEF REPORT FOR CLASS RESULTS	20
C.2 ANALYSIS OF CLASS PROBLEMS	20
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS	20
D. APPENDICES	21
D.1 DOCUMENTS OF CLASS ACTIVITIES	21
D.1.1 Weekly Journal	21
D.1.2 Student Attendance	24
D.2 DOCUMENTS OF EXAMS	25
D.2.1 Mid Exam	25
D.2.2 Final Exam	26
D.3 SAMPLES OF STUDENT PERFORMANCE	27
D.3.1 Power Point File (Assignment 1)	27
D.3.2 Individual Presentation (Assignment 2)	28
D.3.3 Student Work on Mid Exam	29
D.3.4 Student Work on Final Exam	31
D.4 VALIDATION TEST	32
D.4.1 Validation Test of Mid Exam	32
D.4.2 Validation Test of Final Exam	34
D.5 CLASS ACADEMIC ACHIEVEMENT	36

A. SEMESTER LEARNING ACTIVITY PLAN

A.1 COURSE IDENTITY

Module Name	Geophysical Methods
Module Level	Bachelor Degree
Course Code	N/A
Subheading	N/A
Course contained	N/A
Semester/Year	4/2
Module Coordinator	Prof. Tjipto Prastowo, Ph.D
Lecturer	Prof. Tjipto Prastowo, Ph.D
Language	Bahasa Indonesia
Course Classification	Elective
Teaching format/	A weekly meeting in class for 2 'hours' of teaching
The number of hours per	(1 'hour' of teaching = 50 minutes)
week during semester	
Course Load	1 Course Unit = 3 workhours per week or 170 minutes
	per week with various activities as follows:
	Class Activity: 50 minutes
	Structured Learning: 60 minutes
	 Independent Learning: 60 minutes
	2 Course Units = 6 workhours per week = 340 minutes
	per week
Course Credit	2 Course Units
Pre-requisites	Basic Physics 1 and 2, Earth Physics
Course Learning Outcome	1. Demonstrating independent, creative and honest
	characters in doing student assignments, mid and final
	exams.
	2. Understanding a systematic study on various methods
	commonly used in geophysical surveys for examination
	of sub-surface structures near and beneath the surface
	including measurements of physical anomalies in a local
	site.
	3. Applying a geophysical method selected to identify
	characteristics of sub-surface structures near and
	beneath the surface in a surveyed site accurately.
	4. Understanding differences in geophysical data
	collection and processing techniques between common
	collection and processing techniques between common geophysical methods in the framework of each method
Course Content	geophysical methods in the framework of each method
Course Content	geophysical methods in the framework of each method completes the other method and vice versa.
Course Content	geophysical methods in the framework of each method completes the other method and vice versa. Geophysical Methods examine the solid Earth as
Course Content	geophysical methods in the framework of each method completes the other method and vice versa.Geophysical Methods examine the solid Earth as a complex, physical system with a layered structure having
Course Content	 geophysical methods in the framework of each method completes the other method and vice versa. Geophysical Methods examine the solid Earth as a complex, physical system with a layered structure having different characteristics between rock layers constituting
Course Content	 geophysical methods in the framework of each method completes the other method and vice versa. Geophysical Methods examine the solid Earth as a complex, physical system with a layered structure having different characteristics between rock layers constituting the structure of the Earth that can possibly be determined

	a single or a combined method, to accurately detect the presence of a physical anomaly under investigation.
	In this context, the roles of both 2D and 3D modeling for
	sub-surface structure determination (located near and
	•
	below the surface at depth) are vital in identifying and
	characterising a physical system examined. The methods
	discussed include gravity, seismic (reflection, refraction,
	tomography), magnetic, geoelectric, electromagnetic
	induction approaches.
Attributed soft skill	1. Oral communication skills in individual presentation
	2. Collaborative work in a group of students
References and sources	1. Telford, M. W., Geldart, L. P., Sheriff, R. E. and Keys, D.
	A. 1990. Applied Geophysics. 2nd Edition. New York:
	Cambridge University Press, US. pp.1-744.
	2. Blakely, R. J. 1995. Potential Theory in Gravity and
	Magnetic Applications. Cambridge: Cambridge
	University Press, UK. pp.1-512.
	3. Hinze, W. J., von Frese, R. R. B. and Saad, A. H. 2013.
	Gravity and Magnetic Explorations: principles,
	practices, and applications. University Printing House:
	Cambridge University Press, UK. pp.1-512.
	4. Reynolds, J. M. 1997. An Introduction to Applied and
	Environmental Geophysics. Chichester: John Wiley and
	Sons Ltd., UK. pp.1-711.
	5. Glatzmaier, G. A. 2001. Convection in the core and the
	generation of the Earth's magnetic field. An American
	Museum of Natural History Book. The New Press, New
	York: US. pp.62-67.
	6. Stein, S. and Wysession, M. 2003. An Introduction to
	Seismology, Earthquake, and Earth Structure. Malden,
	MA: Blackwell Publishing, US. pp.1-498.
	7. Everett, M. E. 2013. Near-surface Applied Geophysics.
	2nd Edition. New York: Cambridge University Press, US.
	pp.1-422.
	 8. Some power point files and/or course materials
	relevant to Geophysical Methods from the internet.

A.2 COURSE TOPICS

Class discussions involve the following learning materials:

- 1. Geophysics: science of the Earth, length and time scales in geophyiscs, field measurements in geophysics, geophysical methods
- 2. Gravity Method: sub-surface structures near and beneath the Earth's surface, density variation and vertically stratified rock layers in the crust, gravity survey, gravity anomaly, anomaly measurements in gravity survey
- 3. Seismic Method: seismic reflection, seismic refraction, seismic tomography, elasticity and rigidity variations of sub-surface structure near and beneath the surface, seismic

survey and corresponding measurements, seismic wave propagation, seismic energy release via tectonic and volcanic earthquakes, seismo-tectonic activity

- 4. Magnetic Method: the Earth as a giant magnetic source, geodynamo processes, the main field, secondary sources of magnetic field, susceptibility variation, magnetic stratification in the crustal rocks, magnetic survey, magnetic anomaly, magnetic anomaly measurements
- 5. Geoelectric Method: electricity of the Earth, resistivity and conductivity variations in a layered sub-surface structure beneath the surface, geoelectric survey, resistivity anomaly, conductivity anomaly, anomaly measurements
- 6. Electromagnetic Method: measurement techniques based on electromagnetic wave propagation into the ground with natural and artificial sources, electromagnetic induction, VLF and GPR methods for identification of sub-surface structure near the surface
- 7. Geophysical Methods in practice: errors in measurements, correction factors, data collection, data acquisition, data processing, data analysis
- 8. Video clips presentation on poster sessions

A.3 COURSE PROGRAM

THE STATE UNIVERSITY OF SURABAYA FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICS STUDY PROGRAM

Document

Code

			SEME	STER LI	ESSON PLAN				
NAME OF COURSE			COURSE CODE	DISCIPL	INE	COURSE UN	IIT	SEMESTER	DATE CREATED
GEOPHYSICAL METHOD	S			EARTH	PHYSICS	T=2 units	P=?	4 (four)	1 February 2020
AUTHORISATION			AUTHOR		COURSE COORDINATO	DR		HEAD OF PHYS	ICS STUDY PROGRAM
PHYSICS DEPARTMENT			Prof. Tjipto Prastowo, Pł	n.D.	Prof. Tjipto Prastowo,	Ph.D.		Prof. Dr. Muna	sir, M.Si.
Learning Achievement	Program Lea	arning Outco	me (PLO)						
	PLO1	Students a	re able to demonstrate kn	owledge o	f Classical Physics and M	odern Physics	5.		
	PLO6	Students a	re able to improve their ki	nowledge a	nd continue their study	in a higher eo	lucation.		
	PLO7	Students a	re able to communicate th	neir ideas a	nd/or research results th	nrough acade	mic writi	ng and speaking e	effectively.
	PLO10	Students a	re able to demonstrate go	od scientis	t manners, critical thinki	ng and innov	ation skil	lls in research and	professional fields.
	Course Lear	ning Outcom	e (CLO)						
	CLO-1	Demonstra	strating independent, creative and honest characters in doing student assignments, mid and final exams.						
	CLO-2	Understan	ding a systematic study on various methods commonly used in geophysical surveys for examination of sub-surface						
			res near and beneath the surface including measurements of physical anomalies in a local site.						
	CLO-3		pplying a geophysical method selected to identify characteristics of sub-surface structures near and beneath the surface						
			urveyed site accurately.						
	CLO-4		nderstanding differences in geophysical data collection and processing techniques between common geophysical methods						
			he framework of each method completes the other method and vice versa.						
	•		h step of learning (Sub-CL						
	Sub-CLO1	-	to understand the import	ance of geo	ophysics, length and time	e scales in geo	ophyics,	geophysical meth	ods and techniques
			used in field measurements.						
	Sub-CLO2		ng able to understand gravity method, heterogeneity in rock layers and minerals inside the Earth, vertical variation of density, ntification of anomaly in gravity for examination of sub-surface structures near and beneath the surface.						
	Sub-CLO3	-	to understand seismology		-	•			
		near and a	t the surface, various seisr	mic method	is (reflection, refraction,	, tomography), mecha	nisms of seismic e	energy release

		through earthquakes, differences in events of tectonic or volcanic origin, field surveys and corresponding measurements.						
	Sub-CLO4	Being able to understand geodynamo processess in the Earth's outer core as the production of geomagnetic field, rock magnetism						
and mineral magnetics, secondary magnetic fields, susceptibility variation in rock layers, magnetic anomaly, survey measurements of magnetic anomaly. Sub-CLO5 Being able to understand electricity in the Earth's crust, natural dan artificial sources of geoelectric method, resistivity								
	conductivity as two electric parameters, Wenner configuration, Schlumberger configuration, Wenner-Schlumberger configuration.							
	Sub-CLO6	Being able to understand differences in geophysical measurement techniques between natural and artificial sources, a combined						
		method of magnetic and electric approaches or in the form of electromagnetic induction, VLF dan GPR methods for identification of						
		physical structures near the surface.						
	Sub-CLO7	Being able to understand varying surveys and measurement techniques in applied geophysics for exploration of natural resources or						
		other sources that are relevant.						
	Sub-CLO8	Being able to create a poster relevant to lecture materials in Geophysical Methods.						
Course Content	Geophysica	I Methods examine the solid Earth as a complex, physical system with a layered structure having different characteristics between rock						
	layers const	tituting the structure of the Earth that can possibly be determined during field surveys by data collection, acquisition, and processing.						
	These invol	ve the applications of geophyiscal methods and measurement techniques, using either a single or a combined method, to accurately						
	detect the	presence of a physical anomaly under investigation. In this context, the roles of both 2D and 3D modeling for sub-surface structure						
	determinati	ion (located near and below the surface at depth) are vital in identifying and characterising a physical system examined. The methods						
	discussed in	nclude gravity, seismic (reflection, refraction, tomography), magnetic, geoelectric, electromagnetic induction approaches.						
Topic Discussions:	1. Geophysi	ics: science of the Earth, length and time scales in geophyiscs, field measurements in geophysics, geophysical methods						
Learning Materials	2. Gravity N	Nethod: sub-surface structures near and beneath the Earth's surface, density variation and vertically stratified rock layers in the crust,						
		ey, gravity anomaly, anomaly measurements in gravity survey						
	3. Seismic N	Nethod: seismic reflection, seismic refraction, seismic tomography, elasticity and rigidity variations of sub-surface structure near and						
	beneath the	e surface, seismic survey and corresponding measurements, seismic wave propagation, seismic energy release via tectonic and volcanic						
	•	s, seismo-tectonic activity						
	-	Method: the Earth as a giant magnetic source, geodynamo processes, the main field, secondary sources of magnetic field,						
		ty variation, magnetic stratification in the crustal rocks, magnetic survey, magnetic anomaly, magnetic anomaly measurements						
		ric Method: electricity of the Earth, resistivity and conductivity variations in a layered sub-surface structure beneath the surface,						
	-	survey, resistivity anomaly, conductivity anomaly, anomaly measurements						
		agnetic Method: measurement techniques based on electromagnetic wave propagation into the ground with natural and artificial						
		ctromagnetic induction, VLF and GPR methods for identification of sub-surface structure near the surface						
	7. Geophysi	ical Methods in practice: errors in measurements, correction factors, data collection, data acquisition, data processing, data analysis						
	8. Video clip	os presentation on poster sessions						
References	Primary:							
	1. Telford, N	M. W., Geldart, L. P., Sheriff, R. E. and Keys, D. A. 1990. Applied Geophysics. 2nd Edition. New York: Cambridge University Press, US.						

	 pp.1-744. 2. Blakely, R. J. 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press, UK. pp.1-512. 3. Hinze, W. J., von Frese, R. R. B. and Saad, A. H. 2013. Gravity and Magnetic Explorations: principles, practices, and applications. University Printing House: Cambridge University Press, UK. pp.1-512. 4. Reynolds, J. M. 1997. An Introduction to Applied and Environmental Geophysics. Chichester: John Wiley and Sons Ltd., UK. pp.1-711. 5. Glatzmaier, G. A. 2001. Convection in the core and the generation of the Earth's magnetic field. An American Museum of Natural History Book. The New Press, New York: US. pp.62-67. 6. Stein, S. and Wysession, M. 2003. An Introduction to Seismology, Earthquake, and Earth Structure. Malden, MA: Blackwell Publishing, US. pp.1-498. 7. Everett, M. E. 2013. Near-surface Applied Geophysics. 2nd Edition. New York: Cambridge University Press, US. pp.1-422. Some power point files and/or course materials relevant to Geophysical Methods from the internet 							
		•	•		to Geophysical Methods	s from the internet		
Lecture Pre-rec			Prastowo, Ph.D. 5 1 and Basic Physic					
Week	Week Final competence in each learning step (Sub-CLO)		Ass	ssessment Criteria & Format	Learning Format, Methods, Instruction, (Time Allocation) offline online		Learning Materials	Proportion (%)
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)
1	Being able to une the importance of geophysics, leng scales in geophy geophysical met techniques used measurements	of th and time ics, hods and	Students can explain the importance of geophysics, length and time scales in geophyics, geophysical methods and techniques used in field measurements			Contextual Learning Discussion Q & A	 Geophysics: science of the Earth Length and time scales in geophyiscs Field measurements in geophysics Geophysical Methods 	
2	Being able to un	derstand	Students can	Description on		Contextual Learning	Gravity Method	

	gravity mathed	ovalain gravity	student assignments	Discussion	a Cult aurface
	gravity method,	explain gravity	student assignments:		Sub-surface
	heterogeneity in rock layers	method,	1. Thematic ppt file	Q & A	structures near and
	and minerals inside the	heterogeneity in	(by a group of study)		beneath the Earth's
	Earth, vertical variation of	rock layers and	describing		surface
	density, identification of	minerals inside	issues in one of		 Density variation
	anomaly in gravity for	the Earth,	Geophysical		and vertically
	examination of sub-surface	vertical	Methods		stratified rock layers
	structures near and beneath	variation of	2. Individual		in the crust
	the surface	density,	presentation on		 Gravity survey
		identification of	the relevant ppt file		Gravity anomaly
		anomaly in			Anomaly
		gravity for			measurements in
		examination of			gravity survey
		sub-surface			0 , ,
		structures near			
		and beneath the			
		surface			
3	Being able to understand	Students can		Contextual Learning	Seismic Method
	seismology being part of	explain		Discussion	Seismic reflection
	science examining seismic	seismology		Q & A	Seismic refraction
	wave propagation within the	being part of			Seismic tomography
	body of the Earth	science			• Elasticity and rigidity
	near and at the surface,	examining			variations of sub-
	various seismic methods	seismic wave			surface structure
	(reflection, refraction,	propagation			near and beneath
	tomography), mechanisms	within the body			the surface
	of seismic energy release	of the Earth			Seismic survey and
	through earthquakes,	near and at the			corresponding
	differences in events of	surface, various			measurements
	tectonic or volcanic origin,	seismic			Seismic wave
	field surveys and	methods			propagation
	corresponding	(reflection,			Seismic energy
	measurements	refraction,			release via tectonic
		tomography),			and volcanic

	mechanisms of seismic energy release through earthquakes, differences in events of tectonic or volcanic origin, field surveys and corresponding measurements		earthquakes • Seismo-tectonic activity
4 Being able to understand seismology being part of science examining seismic wave propagation within the body of the Earth near and at the surface, various seismic methods (reflection, refraction, tomography), mechanisms of seismic energy release through earthquakes, differences in events of tectonic or volcanic origin, field surveys and corresponding measurements	Students can explain seismology being part of science examining seismic wave propagation within the body of the Earth near and at the surface, various seismic methods (reflection, refraction, tomography), mechanisms of seismic energy release through earthquakes, differences in	Contextual Learning Discussion Q & A	 Seismic Method Seismic reflection Seismic refraction Seismic tomography Elasticity and rigidity variations of sub- surface structure near and beneath the surface Seismic survey and corresponding measurements Seismic wave propagation Seismic energy release via tectonic and volcanic earthquakes Seismo-tectonic activity

5	Being able to understand seismology being part of science examining seismic wave propagation within the body of the Earth near and at the surface, various seismic methods (reflection, refraction, tomography), mechanisms of seismic energy release through earthquakes, differences in events of tectonic or volcanic origin, field surveys and corresponding measurements	events of tectonic or volcanic origin, field surveys and corresponding measurements Students can explain seismology being part of science examining seismic wave propagation within the body of the Earth near and at the surface, various seismic methods (reflection, refraction, tomography), mechanisms of seismic energy release through earthquakes, differences in events of tectonic or volcanic origin, field surveys		Contextual Learning Discussion Q & A	 Seismic Method Seismic reflection Seismic refraction Seismic tomography Elasticity and rigidity variations of sub- surface structure near and beneath the surface Seismic survey and corresponding measurements Seismic wave propagation Seismic energy release via tectonic and volcanic earthquakes Seismo-tectonic activity 	
		field surveys and				

		corresponding		
6	Being able to understand geodynamo processess in the Earth's outer core as the production of geomagnetic field, rock magnetism and mineral magnetics, secondary magnetic fields, susceptibility variation in rock layers, magnetic anomaly, survey methods and measurements of magnetic anomaly	measurements Students can explain geodynamo processess in the Earth's outer core as the production of geomagnetic field, rock magnetism and mineral magnetics, secondary magnetic fields, susceptibility variation in rock layers, magnetic anomaly, survey methods and measurements of magnetic anomaly	Contextual Learning Discussion Q & A	 Magnetic Method The Earth as a giant magnetic source Geodynamo processes The main field Secondary sources of magnetic field Susceptibility variation Magnetic stratification in the crustal rocks Magnetic anomaly Magnetic anomaly measurements
7	Being able to understand electricity in the Earth's crust, natural dan artificial sources of geoelectric method, resistivity and conductivity as two electric parameters, Wenner configuration, Schlumberger configuration, Wenner- Schlumberger configuration	Students can explain electricity in the Earth' crust, natural dan artificial sources of geoelectric method, resistivity and conductivity as	Contextual Learning Discussion Q & A	 Geoelectric Method Electricity of the Earth Resistivity and conductivity variations in a layered sub- surface structure beneath the

8	Mid Semester Exam	two electric parameters, Wenner configuration, Schlumberger configuration, Wenner- Schlumberger configuration			surface Geoelectric survey Resistivity anomaly Conductivity anomaly Anomaly measurements in geoelectric survey	30%
9	Being able to understand differences in geophysical measurement techniques between natural and artificial sources, a combined method of magnetic and electric approaches or in the form of electromagnetic induction, VLF dan GPR methods for identification of physical structures near the surface	Students can explain differences in geophysical measurement techniques between natural and artificial sources, a combined method of magnetic and electric approaches or in the form of electromagnetic induction, VLF dan GPR methods for identification of physical structures near the surface		Contextual Learning Discussion Q & A	 Electromagnetic Method Measurement techniques based on electromagnetic wave propagation into the ground with natural and artificial sources Electromagnetic induction VLF and GPR methods for identification of sub-surface structure near the surface 	
10	Being able to understand	Students can	Student assignment	Contextual Learning	Electromagnetic	30%

11	varying surveys and measurement techniques in applied geophysics for exploration of natural resources or other sources that are relevant	explain varying surveys and measurement techniques in applied geophysics for exploration of natural resources or other sources that are relevant	1 (ppt file): handed in	Discussion Q & A	Method Measurement techniques based on electromagnetic wave propagation into the ground with natural and artificial sources Electromagnetic induction VLF and GPR methods for identification of sub-surface structure near the surface
11	Being able to understand varying surveys and measurement techniques in applied geophysics for exploration of natural resources or other sources that are relevant	Students can explain varying surveys and measurement techniques in applied geophysics for exploration of natural resources or other sources that are relevant		Contextual Learning Discussion Q & A	 Geophysical methods in practice Errors in measurements Correction factors Data collection Data acquisition Data processing Data analysis
12	Being able to understand varying surveys and measurement techniques in applied geophysics for exploration of natural	Students can explain varying surveys and measurement techniques in		Contextual Learning Discussion Q & A	 Geophysical methods in practice Errors in measurements Correction factors

			Τ	1	Ι		[]
	s or other sources	applied				 Data collection 	
re r	relevant	geophysics for				 Data acquisition 	
		exploration of				 Data processing 	
		natural				 Data analysis 	
		resources or					
		other sources					
		that are relevant					
abl	le to create a poster	Students can			Preparation for	Demo ppt files	
nt t	to lecture materials	create a poster			Presentation for	on Geophysical	
ph	nysical Methods	relevant to			Project-Based	Methods	
		lecture			Learning	(with lecturers take	
		materials in			Discussion	the lead for the class	
		Geophysical			Q & A	demo)	
		Methods					
abl	le to create a poster	Students can	Student assignment		Individual	Individual	
nt f	to lecture materials	create a poster	2 (relevant clips):		Presentation for	Presentation	
oph [,]	nysical Methods	relevant to	handed in		Project-Based	on one of Geophysical	
•		lecture			Learning	Methods	
		materials in	Criteria for		Discussion	(with students being	
		Geophysical	assessment are		Q & A	active for class	
		Methods	available			presentation)	
						, ,	
abl	le to create a poster	Students can	Student assignment		Individual	Individual	
nt †	to lecture materials	create a poster	2 (relevant clips):		Presentation for	Presentation	
oph [,]	nysical Methods	relevant to	handed in		Project-Based	on one of Geophysical	
•		lecture			Learning	Methods	
		materials in	Criteria for		Discussion	(with students being	
		Geophysical	assessment are		Q & A	active for class	
		Methods	available			presentation)	
Exai	m		•				40%
Exa	ım	Geophysical	assessment are		Discussion Q & A	(with students being active for class presentation)	

A.4 MAPPING OF LEARNING OUTCOME-COURSE OUTCOME

Competency of SSC-ASIIN	Component	Code	Programme Learning Outcome (PLO)
Specific	Knowledge	KNO-1	Able to demonstrate knowledge of Classical
competences		(PLO1)	Physics and Modern Physics
		KNO-2	Able to formulate a physical systems as physical
		(PLO2)	model by using mathematics
		KNO-3	Able to solve problems in physical systems
		(PLO3)	comprehensively by using mathematics and
			computational tools
	Skill	SKI-1	Able to analyze a physical system by applying
		(PLO4)	mathematics and computational tools/ICT
		SKI-2	Able to design and conduct experiments in
		(PLO5)	learning physics by applying the scientific methods
		SKI-3	Able to improve their knowledge and be able to
		(PLO6)	continue their study in a higher education
		SKI-4	Able to communicate their ideas and/or research
		(PLO7)	results in academic writing and speaking
			effectively
Social and	Social	SOC-1	Able to make a decision based on the data and
attitude		(PLO8)	information in order to fulfil and evaluate their task responsibility
competences		SOC-2	Able to work as an individual as well as a team
		(PLO9)	effectively, have entrepreneurship skill and
		(1 203)	awareness of environmental issues
	Attitude	ATT-1	Able to demonstrate good scientist's manners,
		(PLO10)	critical thinking and innovation skills in research
			and professional fields; and willing to do lifelong
			learning
		ATT-2	Able to demonstrate the appreciation of
		(PLO11)	religious values, and nationalism as citizens as
			well as conducting their tasks professionally

A.4.1 Program Learning Outcome (PLO) of UPP

A.4.2 Program Educational Objective (PEO) of UPP

- 1. Produce Bachelor of Physics who are able to use physics knowledge and methodology to solve problems in their work field.
- 2. Produce Bachelor of Physics who have a strong commitment to developing knowledge, whether by studying in a higher-level degree working in a formal institution and entrepreneurs.
- 3. Produce Bachelor of Physics who master the scientific method to observe, analyze and understand physical phenomena, and produce scientific work and contribute according to their expertise.
- 4. Produce Bachelor of Physics who masteries physics that is able to apply their knowledge, expertise in various fields of work, and develop themselves in their career environment.
- 5. Produce Bachelor of Physics who can communicate orally and/ in writing effectively, creatively, innovatively, and collaboratively, as well as working in teams.

			Objectives		
Outcomes	Produce Bachelor of Physics who are able to use physics knowledge and methodology to solve problems in their work field.	Produce Bachelor of Physics who have a strong commitment to developing knowledge, whether by studying in a higher-level degree working in a formal institution and entrepreneurs.	Produce Bachelor of Physics who master the scientific method to observe, analyze and understand physical phenomena, and produce scientific work and contribute according to their expertise.	Produce Bachelor of Physics who masteries physics that is able to apply their knowledge, expertise in various fields of work, and develop themselves in their career environment.	Produce Bachelor of Physics who can communicate orally and/ in writing effectively, creatively, innovatively, and collaboratively, as well as working in teams.
PLO-1	S	S	S	S	S
PLO-2	S	S	S	S	S
PLO-3	S	S	S	S	S
PLO-4	S	S	S	S	S
PLO-5	S	М	S	М	S
PLO-6	S	М	S	S	М
PLO-7	S	S	S	М	S
PLO-8	S	М	S	М	S
PLO-9	S	М	S	М	S
PLO-10	М	М	М	М	S
PLO-11	М	М	М	S	S

A.4.3 Mapping of PLO-PEO

Notes:

S = Strong, M = Moderate, L = Low

B. COURSE ASSESSMENT

B.1 ASSESSMENT RUBRIC

Notice that evaluation of student performances is taken from two student assignments, including a thematic ppt file (assignment 1) and an individual presentation (assignment 2), mid and final exams.

The following rubric is used for assessing student assignment 2.

Course	:	Name of Student	:
Course Unit	:	Study Group	:

No	Aspects of Assessment	Scoring Scale			
		1	2	3	4
1	Attitude				
2	Continuity				
3	Content				
4	Time Management				
5	Responsive Talk				
	Presentation Grade				

Scoring Scale:

1 = inadequate	3 = good
2 = adequate	4 = very good

Presentation Grade = Total score obtained for each student × 5

B.2 ASSESSMENT SYSTEM

Final grade for each student is obtained from each component of assessment below,

Assignment 1 (ppt file)	: 30%
Mid Exam (written)	: 30%
Final Exam (written) + Assignment 2 (individual presentation)	: 40%

B.3 WEIGHT DISTRIBUTION OF ASSESSMENT

Component	CLO-1	CLO-2	CLO-3	CLO-4	TOTAL
Assignment 1	40	30	-	30	100
Mid Exam	30	30	10	30	100
Final Exam + Assignment 2	25	30	15	30	100

Notice that all numerical data in the above table are given in per cent.

B.4 STUDENT GRADE SYSTEM

Final grade for each student is classified below according to a total score obtained,

Excellent : if a total score is greater than or equal to 80

Good : if a total score is greater than or equal to 70 Satisfactory : if a total score is greater than or equal to 55

Failed : if a total score is less than 55

Grade	Interval
A	85 ≤ A <100
A-	80 ≤ A- < 85
B+	75 ≤ B+ < 80
В	70 ≤ B < 75
В-	65 ≤ B- < 70
C+	60 ≤ C+ < 65
С	55 ≤ C < 60
D	40 ≤ D < 55
E	0 ≤ E < 40

C. COURSE DEVELOPMENT

C.1 A BRIEF REPORT FOR CLASS RESULTS

The following table reports student academic achievement during the course.

Parameter	Ν	N in per cent
The number of students taking the subject	15	100
The number of students who has passed the course during a normal time	15	100
The number of students who has passed the course by a remedial treatment	-	-
The number of students who has failed the course after taking a remedial treatment	-	-

C.2 ANALYSIS OF CLASS PROBLEMS

Class achievement is recorded very successful with all the student scored greater than 80, classified as excellent. The final scores were only distributed to grades A and A- (both are classified as excellent academic achievement).

C.3 STRATEGY FOR ALTERNATIF SOLUTIONS

N/A. Perhaps in the future, student assignments may include a short article (for assignment 1), a thematic poster (for assignment 2), and an individual presentation (for assignment 3). All these assignments are evaluated and assessed using different rubrics.

D. APPENDICES

D.1 DOCUMENTS OF CLASS ACTIVITIES

D.1.1 Weekly Journal

7/18/2021

SIAKADU: Cetak Jurnal Perkuliahan

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA

Kampus Ketintang Jalan Ketintang, Surabaya 60231 T: +6231-8293484 F: +6231-8293484 Iaman: unesa.ac.id email : bakpk@unesa.ac.id

Aktivitas Perkuliahan

		le Pengukuran Geofis	ika Dosen :			70203199502100
Kelas	: 2016D					
ladwal	& Ruang : C03.01	.02 (13.00 - 14.40) R.				
No.	Tanggal	Pertemuan	Topik	Peserta	Status	Dosen
1	03-02-2020	Pertemuan ke 1	 Penjelasan RPS Metode Pengukuran Geofisika Penjelasan tugas, sistem evaluasi dan asesmen perkuliahan Metode Pengukuran Geofisika Pengertian geofisika Besaran, skala gerak dan skala waktu geofisika Metode Pengukuran Geofisika 	13	Terjadwal	Tjipto Prastowo
2	10-02-2020	Pertemuan ke 2	 Metode gravitasi Gravitasi lapisan batuan dan mineral Bumi Variasi densitas sebagai ukuran stratifikasi Anomali gravitasi Pengukuran anomali lokal gravitasi 	15	Terjadwal	Tjipto Prastowo
3	17-02-2020	Pertemuan ke 3	 Metode seismik Variasi elastisitas batuan Seismik refleksi Seismik refraksi Seismik tomografi Body and surface waves Aktivitas seismik dan energi seismik Gempa tektonik dan gempa vulkanik Survei dan pengukuran 	15	Terjadwal	Tjipto Prastowo

7/19	/2021	

SIAKADU: Cetak Jurnal Perkuliahan

			seismik			
4	24-02-2020	Pertemuan ke 4	 Metode seismik Variasi elastisitas batuan Seismik refleksi Seismik refraksi Seismik tomografi Body and surface waves Aktivitas seismik dan energi seismik Gempa tektonik dan gempa vulkanik Survei dan pengukuran seismik 	15	Terjadwal	Tjipto Prastowo
5	02-03-2020	Pertemuan ke 5	 Metode seismik Variasi elastisitas batuan Seismik refleksi Seismik refraksi Seismik tomografi Body and surface waves Aktivitas seismik dan energi seismik Gempa tektonik dan gempa vulkanik Survei dan pengukuran seismik 	15	Terjadwal	Tjipto Prastowo
6	09-03-2020	Pertemuan ke 6	 Metode magnetik Kemagnetan Bumi Medan magnet utama Proses geodinamo Kemagnetan lapisan batuan dan mineral Bumi Variasi suseptibilitas lapisan batuan Medan magnet eksternal Anomali lokal magnetik Survei dan pengukuran anomali magnetik 	15	Terjadwal	Tjipto Prastowo
7	16-03-2020	Pertemuan ke 7	Kuliah tatap muka ditiadakan menyusul SE Rektor Unesa tentang Upaya Pencegahan Penyebaran Virus Corona (tugas mandiri didistribusikan via WA)	15	Terjadwal	Tjipto Prastowo

https://siakadu.unesa.ac.id/ff518f1c-6f07-3b81-89ea-67a99b3c0af2.aspx?id=b9dd69b0-18f6-39f0-ac0d-b4e76f1d2237&cetak_jurnal=1

2/3

7/18/2021

SIAKADU: Cetak Jurnal Perkuliahan

		ke 8	didistribusikan via WA)		1	
9	30-03-2020	Pertemuan ke 9	Pembahasan UTS online	15	Terjadwal	Tjipto Prastowo
10	06-04-2020	Pertemuan ke 10	Kuliah online dengan materi persiapan pembuatan file presentasi Metode Pengukuran Geofisika melalui komunikasi terbimbing via WA	15	Terjadwal	Tjipto Prastowo
11	13-04-2020	Pertemuan ke 11	Supervisi online Tugas Mandiri perkuliahan online dan tanya jawab via WA untuk persiapan presentasi online	15	Terjadwal	Tjipto Prastowo
12	20-04-2020	Pertemuan ke 12	Supervisi online Tugas Mandiri perkuliahan online dan tanya jawab via WA untuk persiapan presentasi online	15	Terjadwal	Tjipto Prastowo
13	27-04-2020	Pertemuan ke 13	Supervisi online Tugas Mandiri perkuliahan online dan tanya jawab via WA untuk persiapan presentasi online	15	Terjadwal	Tjipto Prastowo
14	04-05-2020	Pertemuan ke 14	Supervisi online persiapan akhir presentasi materi MPG berbasis file ppt yang relevan melalui rekaman video klip	15	Terjadwal	Tjipto Prastowo
15	11-05-2020	Pertemuan ke 15	Review perkuliahan MPG melalui pembahasan masing-masing presentasi individual	15	Terjadwal	Tjipto Prastowo

3/3

D.1.2 Student Attendance

7/18/2021

SIAKAD : Absen

UNIVERSITAS NEGERI SURABAYA

Jl. Lidah Wetan, Surabaya - 60213 Telepon :+6231-99424932 Faksimile :+6231-99424932 e-mail :bakpk@unesa.ac.id

PRESENSI KULIAH

Periode 2019/2020 Genap

Mata Kuliah Kelas Prodi

: Metode Pengukuran Geofisika : 2016D : S1 Fisika

: Prof. Tjipto Prastowo, Ph.D. Dosen

		Pertemuan Ke																
			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15											15	1			
No	NIM	Nama Mahasiswa	03	10	17	24	02	09	16	23	30	06	13	20	27	04	11	%
			Feb	Feb	Feb	Feb	Mar	Mar	Mar	Mar	Mar	Apr	Apr	Apr	Apr	May	May	
			20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
1.	16030224009	AQBEL QASHMAL BILHAQ	A	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	93.3 %
2.	16030224033	NEGA BARLIH AMRIH LAKSONO	A	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	93.3 %
3.	17030224004	FAHIRA NADIVA ERNANDI	н	Н	н	Н	н	н	н	н	Н	Н	н	н	Н	н	н	100 %
4.	17030224006	TETI APRILIANI	н	Н	н	Н	н	Н	н	Н	Н	Н	н	н	н	н	н	100 %
5.	17030224009	WIDYA RAHMAWATI	н	Н	н	Н	н	Н	н	Н	н	Н	н	н	н	н	н	100 %
6.	17030224010	GANDHIS PUTRI AYUDIA	н	Н	н	н	н	н	н	Н	н	Н	н	н	Н	н	н	100 %
7.	17030224012	HILDA RISANTI	н	Н	н	н	н	н	н	н	н	Н	н	н	н	н	н	100 %
8.	17030224013	MOCH. ROMADLON ABDULLOH AKBAR	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 %
9.	17030224022	FIRDA RULIFIANGGA	н	Н	Н	Н	н	Н	Н	н	Н	Н	н	Н	н	н	н	100 %
10.	17030224025	IVO NURKHOLIFAH	н	Н	н	Н	н	н	н	н	Н	н	н	н	н	н	н	100 %
11.	17030224031	KHARISMA FITROTUL UMMAH	н	Н	н	Н	Н	Н	н	Н	н	Н	н	н	н	Н	н	100 %
12.	17030224037	ERLIN ANDAYANI DEWI	н	Н	Н	Н	н	Н	н	Н	Н	Н	Н	н	н	Н	н	100 %
13.	18030224057	ROIFATU DIANA ZAIN	н	н	н	Н	н	Н	н	н	н	н	н	н	н	н	н	100 %
14.	18030224067	MUSLIMATUL FITRIA	н	н	н	Н	н	н	н	н	н	Н	н	н	н	н	н	100 %
15.	18030224068	QONITAH SALSABILLAH	н	Н	н	Н	н	Н	н	Н	Н	Н	н	н	н	н	н	100 %
Tanda Tangan Dosen / Asisten																		

https://siakadu.unesa.ac.id/028ad25d-5663-362b-a49d-702023b11548.aspx?print=b9dd69b0-18f6-39f0-ac0d-b4e76f1d2237&jns=absended to the state of the

D.2 DOCUMENTS OF EXAMS

D.2.1 Mid Exam

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3 lt. 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

UJIAN TENGAH SEMESTER (UTS) SEMESTER GENAP TAHUN AKADEMIK 2019/2020

MATA KULIAH / SKS	: Metode Pengukuran Geofisika / 2 SKS
PRODI / KELAS	: Fisika / 2016D
DOSEN	: Tjipto Prastowo, Ph.D
HARI / TANGGAL	: Senin, 23 Maret 2020
MEKANISME	: Work in a group at home
SIFAT	: Edisi Covid-19

PETUNJUK: Kerjakan UTS Metode Pengukuran Geofisika berikut ini dengan baik dalam bentuk kerja sama atau collaborative work within your own working group of 3 students.

Diskripsikan dengan baik dan jelas salah satu metode pengukuran dalam survei geofisika dengan mengambil studi kasus terapan metode tersebut pada penyelesaian masalah geofisika di alam (100 poin). Beberapa metode geofisika adalah sbb:

- Metode Gravitasi
- Metode Magnetik
- Metode Seismik Refleksi
- Metode Seismik Refraksi
- Metode Resistivitas
- Metode Elektromagnetik (GPR, VLF)

Tulislah diskripsimu dalam kertas dengan rincian aturan di bawah ini:

NOTES:

- 1. Jawaban soal UTS dikumpulkan ke 081231537072 atau tjiptoprastowo@unesa.ac.id
- 2. Jawaban soal UTS ditulis dengan komputer dalam file docx dengan ketentuan sbb:
 - Ukuran kertas : A4
 - Panjang jawaban : 2 halaman
 - Batas tulisan : 2,54 cm (atas-bawah, kiri-kanan)
 - Jenis font
- : Times New Roman
- Ukuran font : 11 pt
- Ukuran spasi : multiple 1.15
- 3. Jangan mengumpulkan file ppt pada tahap ini.

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA

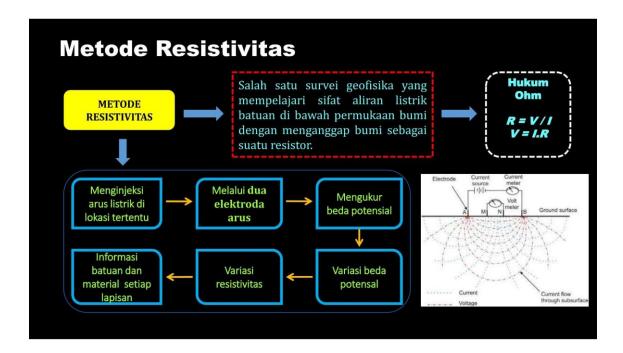
Kampus Ketintang Jalan Ketintang Gedung C3 lt. 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

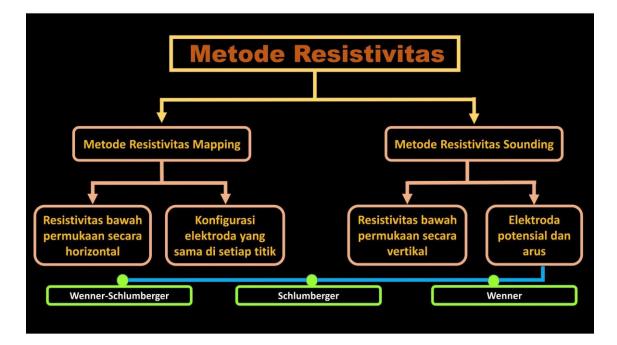
UJIAN AKHIR SEMESTER (UAS) SEMESTER GENAP TAHUN AKADEMIK 2019/2020

MATA KULIAH / SKS	: Metode Pengukuran Geofisika / 2 SKS
PRODI / KELAS	: Fisika / 2016D
DOSEN	: Tjipto Prastowo, Ph.D
HARI / TANGGAL	: Selasa, 12 Mei 2020
WAKTU	: 08.00-09.40

PETUNJUK: Kerjakan UAS Metode Pengukuran Geofisika berikut ini dengan baik dalam bentuk kerja sama atau collaborative work within your own working group of 3 students.

- 1. Diskripsikan dengan baik mengapa metode geofisika memerlukan survei lapangan. (20 poin)
- 2. Dalam pelaksanaan survei lapangan, ada metode aktif dan metode pasif. Diskripsikan dengan baik perbedaan antara kedua metode tersebut. (20 poin)
- 3. Dalam pelaksanaan survei lapangan, surveyor memilih metode aktif atau metode pasif untuk melakukan pengukuran besaran fisis yang relevan dengan metode geofisika yang telah dipilih. Faktor apa saja yang bisa memengaruhi akurasi hasil ukur besaran fisis di lapangan ? (20 poin)
- 4. Pengukuran besaran fisis di lapangan disebut sebagai pengumpulan data lapangan. Seringkali data lapangan bukan berbentuk data tunggal melainkan kombinasi beberapa data besaran fisis. Gabungan data besaran fisis tersebut biasa dikenal sebagai akuisisi data.
- 5. Data hasil akuisisi kemudian diproses dalam suatu tahap yang dikenal sebagai pemrosesan atau pengolahan data. Faktor apa saja menurutmu yang bisa memengaruhi akurasi hasil pemrosesan atau pengolahan data ? (20 poin)
- 6. Hasil pemrosesan atau pengolahan data tersebut biasanya dianalisis untuk diinterpretasikan dalam bentuk tafsiran fisis hasil penelitian. Faktor apa saja menurutmu yang bisa memengaruhi akurasi analisis atau interpretasi hasil pemrosesan atau pengolahan data ? (20 poin)


NOTES:


- 1. Jawaban soal UAS dikirimkan ke tjiptoprastowo@unesa.ac.id
- 2. Jawaban soal UAS ditulis dengan komputer dalam file docx dengan ketentuan sbb:
 - Ukuran kertas : A4
 - Panjang jawaban
 - : 1 halaman : 2,54 cm (atas-bawah, kiri-kanan)
 - Batas tulisan Jenis font
 - : Times New Roman
 - Ukuran font
 - : 11 pt Ukuran spasi : multiple 1.15
- 3. Nomer 4 tidak membutuhkan jawaban.

D.3 SAMPLES OF STUDENT PERFORMANCE

D.3.1 Power Point File (Assignment 1)

Students were asked in a group to create a power point file, explaining a geophysical method commonly used in geophysical surveys. Each group had their own topic to discuss in the file. The followings were examples of two slides made by a group of students.

D.3.2 Individual Presentation (Assignment 2)

In this stage, students were required to create a video clip containing a short talk on the basis of their own thematic ppt file for Individual Presentation (Assignment 2). The following picture was taken from a clip made by one of the students, explaining about Resistivity Method.

The following rubric is used for assessing student assignment 2.

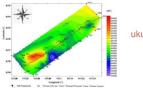
Course Course	e : e Unit :	Name of Student : Study Group :					
No	Aspects of Assessment		:	Scorin	g Scale		
			1	2	3	4	
1	Attitude					✓	
2	Continuity					✓	
3	Content				✓		
4	Time Management				✓		
5	Responsive Talk				✓		
	Presentation Grade			8	5		

Scoring Scale:

1 = inadequate	
2 = adequate	

3 = good 4 = very good

Presentation Grade = Total score obtained for each student × 5

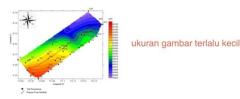

D.3.3 Student Work on Mid Exam

Nama Kelompok:

Fahira Nadiva Ernandi (17030224004)1. Mempertimbangkan judul topik tulisan kelompok ini, maka akan sangat manis 2. Widya Rahmawati (17030224009) apabila paragraf pembuka dimulai dengan penjelasan singkat tentang apa itu Kharisma Fitrotul Ummah (17030224031)3. Interpretasi Struktur Bawah Permukaan dan Jalur Sesar Mayor Gerindulu **Dengan Metode Magnetik** Penelitian ini telah dilakukan pada kawasan jalur sesar mayor gerindulu. Pacitan. Dengan tujuan untuk mengetahui persebaran nilai anomali medan magnet, struktur bawah permukaan, dan identifikasi jalur sesar tersebut. Sesar Gerindulu merupakan jalur patahan yang searah dengan jalur Sungai Grindulu dan termasuk sesar mayor di Kabupaten Pacitan yang memiliki potensi untuk aktif di masa yang akan datang. Menurut peta, Kawasan Sesar Mayor Grindulu terdiri atas lima formasi batuan yaitu Formasi Alluvium (Qa), Formasi Oyo (Tmo), Formasi Wonosari (Tmwl), Formasi Jaten (Tmj), dan Formasi Arjosari (Toma). Perbedaan formasi ini menyebabkan perbedaan pada struktur

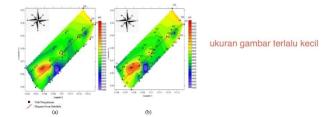
Alat yang digunakan untuk akuisisi medan magnet pada kawasan sesar mayor gerindulu adalah Proton Precession Magnetometer (PPM). Medan magnet yang terukur dengan PPM merupakan medan magnet total yang terdiri atas medan magnet utama bumi, medan magnet luar, dan anomali medan magnet. Anomali medan magnet menjadi target metode geomagnet dikarenakan anomali medan magnet merepresentasikan struktur bawah permukaan pada kawasan tersebut.

bawah permukaan. Penelitian ini menggunakan metode magnetik karena metode ini dapat digunakan untuk mengintrepretasikan dan memodelkan struktur bawah permukaan serta struktur geologi.

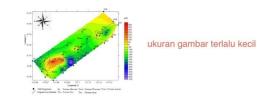


ukuran gambar terlalu kecil

Gambar 1. Kontur Medan Magnet Total


Distribusi nilai medan magnet total dapat diketahui dengan melakukan interpolasi nilai medan magnet total pada titik-titik pengukuran. Skala warna pada kontur di atas menunjukkan adanya klosur rendah, sedang, hingga tinggi. Garis kontur anomali berwarna jingga-merah menunjukkan anomali bernilai positif. Garis kontur anomali berwarna kuning-ungu menunjukkan anomali bernilai negatif. Formasi Qa memiliki nilai medan magnet rendah dikarenakan Formasi Qa ini merupakan hasil endapan sungai dengan material atau batuan yang memiliki nilai suseptibilitas rendah seperti kerakal, kerikil, pasir, lanau, lempung, dan lumpur. Formasi Tmo, Tmwl, dan Toma memiliki nilai medan magnet sedang dikarenakan formasi ini terdiri atas berbagai material penyusun seperti batu pasir, batu lempung, batu gamping yang memiliki nilai suseptibilitas rendah dan batu tuf, batu breksi yang memiliki nilai suseptibilitas tinggi. Formasi Tmj memiliki nilai medan magnet tinggi dikarenakan pada formasi ini terdapat intrusi basalt yang muncul hingga permukaan sepanjang 12,4 m, dimana batuan tersebut memiliki nilai suseptibilitas yang lebih tinggi dibandingkan dengan batuan sedimen yang mendominasi daerah penelitian.

Global Medan magnet regional merupakan medan magnet utama bumi yang berubah terhadap waktu. Nilai IGRF (*International Geomagnetic Reference Field*) diperbaharui setiap 5 tahun sekali dimana nilainilai tersebut diperoleh dari hasil pengukuran rata-rata pada daerah luasan 1 juta km². Kontur IGRF daerah penelitian menunjukkan bahwa bagian selatan memiliki klosur yang lebih tinggi dibandingkan dengan bagian utara daerah penelitian. Rata-rata nilai IGRF di daerah penelitian adalah 45.084 nT.


Gambar 2. Kontur IGRF Daerah Penelitian

Medan magnet luar merupakan medan magnet yang berasal dari pengaruh luar bumi yang disebabkan oleh adanya arus listrik di ionosfer. Berdasarkan hasil perhitungan, koreksi variasi harian pada kawasan Sesar Mayor Grindulu bervariasi antara -164 nT hingga 83 nT.

Gambar 3. (a) Kontur Medan Magnet Total, (b) Kontur Medan Magnet Total yang dikoreksi Variasi Harian

Setelah dilakukan koreksi variasi harian, peta kontur medan magnet total tidak menunjukkan adanya perubahan yang signifikan. Hal ini menunjukkan medan magnet total yang terukur di lapangan tidak dipengaruhi secara signifikan oleh medan magnet luar.

Gambar 4. Kontur Anomali Medan Magnet di Daerah Penelitian

Anomali medan magnet mencerminkan batuan yang mengandung mineral-mineral bersifat magnetik yang berada di bawah permukaan. Menunjukkan bahwa di daerah penelitian terdapat klosur rendah, sedang hingga tinggi. Nilai anomali medan magnet yang dihasilkan berkorelasi dengan mineral-mineral magnetik penyusun batuan di daerah penelitian, dimana batuan yang tersusun atas banyak mineral-mineral magnetik akan menyumbangkan nilai suseptibilitas yang besar dan sebaliknya. Formasi Qa di daerah penelitian didominasi oleh endapan pasir sungai dan batu pasir yang memiliki rentang nilai suseptibilitas rendah dengan rentang nilai anomali medan magnet -700 nT sampai -400 nT. Pada Formasi Toma, Tmwl, dan Tmo di daerah penelitian terdapat berbagai macam batuan seperti batu gamping, batu pasir, batu lempung, batu breksi dan batu tuf sehingga dihasilkan nilai anomali medan magnet yang lebar dengan rentang nilai -400 nT sampai 50 nT, sedangkan pada Formasi Tmj daerah penelitian terdapat batu pasir konglomeratan dan intrusi basalt yang muncul hingga permukaan dengan rentang nilai anomali medan magnet berkisar antara 50 nT sampai 400 nT.

CATATAN

1. Tulisan kelompok ini terlalu banyak mengambil kalimat dari sumber utama (kebetulan saya punya file pdf nya).

2. Selain itu, banyak redaksional kalimat yang membingungkan.

3. Sebetulnya tidak masalah apabila kita mengambil ide dari pekerjaan orang dengan catatan kalimat yang kita tulis adalah kalimat buatan kita sendiri. Sekaligus dengan teknik menulis seperti itu kita bisa meringkas dan memperjelas bagian-bagian tertentu dalam teks sumber yang diperlukan untuk mengembangkan cerita sederhana topik tulisammu. Sederhana itu tidak selalu buruk kualitas.

D.3.4 Student Work on Final Exam

In this stage, students were asked to solve a set of problems related to their thematic ppt file describing one of geophysical methods. The students worked in a group to solve the problems.

UAS Metode Pengukuran Fisika

Gandhis Putri Ayudia, Fingda Rulifiangga, Ivo Nurkholifah

- Metode geofisika adalah metode yang mempelajari parameter-parameter fisika di bawah permukaan bumi yang tidak dapat dilihat oleh mata. Metode geofisika memerlukan survei lapangan untuk mengidentifikasi, menentukan lokasi, sebaran, struktur geologi, serta sampling geologi lapangan untuk menentukan posisi akurat sebelum melakukan pengambilan data utama. Tujuan utama survei geofisika yaitu untuk membuat model bawah permukaan bumi dengan mengandalkan data lapangan yang diukur dengan bantuan alat-alat fisika yang ditempatkan di atas permukaan bumi sehingga diketahui sifat-sifat dan kondisi di bawah permukaan bumi baik secara vertikal maupun horisontal. Survei lapangan maupun pengukuran harus dilakukan secara terus-menerus, berkelanjutan, dan terintegrasi dengan menggunakan beragam metode geofisika.
- Dalam survei geofisika terdapat dua metode yang dibedakan berdasarkan medan yang digunakan,
- 20 yaitu metode aktif dan metode pasif. Metode aktif dilakukan dengan membuat sumber usikan untuk mendapatkan respon bumi sebagai gambaran mengenai suatu lokasi tertentu. Sumber usikan berupa arus listrik, sumber radioaktif, atau gelombang elektromagnetik yang diinjeksikan ke dalam bumi dengan respon yang sesuai dengan keadaan strktur yang dilaluinya. Contoh metode aktif yaitu metode geolistrik dan metode seismik. Sedangkan metode pasif adalah metode geofisika yang pengukurannya dilakukan dengan memanfaatkan medan alami yang dipancarkan bumi, misalnya dengan memanfaatkan radiasi gelombang gempa bumi, medan gravitasi bumi, medan magnetik bumi, medan listrik dan elektromagnetik bumi. Contoh metode pasif yaitu metode gavitasi dan metode magnetik.

Metode geolistrik resistivitas merupakan metode yang tergolong aktif karena parameter yang
 diukur yaitu nilai resistivitas batuan yang merupakan respon batuan ketika dikenai medan gangguan berupa arus listrik yang diinjeksikan ke dalam bumi. Faktor-faktor yang mempengaruhi akurasi data hasil ukur besaran fisis di lapangan di antaranya adalah:

- a) batas ketelitian alat ukur yang digunakan
- b) penguasaan terhadap alat ukur yang digunakan
- c) kondisi lingkungan di sekitar lokasi penelitian
- d) penentuan metode yang digunakan
- 4.

 Pemrosesan atau pengolahan data geolistrik resistivitas dari hasil akuisisi dapat dilakukan dengan menggunakan komputer sehingga, memungkinkan untuk penerapan akuisisi data dengan menggunakan software. Adapun faktor-faktor yang mempengaruhi akurasi hasil pemrosesan atau pengolahan data diantaranya adalah:

- a) Jenis software yang digunakan
- b) Ketelitian dalam penginputan data harus sesuai dengan format software yang dipilih
- c) Kelengkapan data yang diperoleh
- d) Pemilahan data atau eliminasi data yang digunakan, hal ini dilakukan untuk menghilangkan data yang memiliki tingkat *error* yang tinggi
- 6. Pengolahan data geolistrik resistivitas dilakukan dengan menggunakan perangkat lunak dan mendapatkan hasil berupa nilai resistivitas serta posisinya pada suatu kedalaman di bawah permukaan. Faktor yang dapat mempengaruhi akurasi analisis atau interpretasi hasil pemrosesan adalah inversi dan perhitungan nilai resistivitas semu berdasarkan data pengukuran lapangan sehingga interpretasi nilai resistivitas sebenarnya terhadap kedalaman dari data permukaan dan data sekunder juga berpengaruh. Hasil analisis berdasarkan data akan diinterpretasi sebenarnya dan pengelompokan batuan.

D.4 VALIDATION TEST

D.4.1 Validation Test of Mid Exam

KEMENTERIAN PENDIDIKAN, KEBUDAYAAAN, RISET DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3, Lantai 1 Surabaya 60231 E: physics@unesa.ac.id

www.tuv.com ID 9108650021

Na	me of Course	:	Geophysical Methods
CL	O:	:	Sub-CLO:
1. 2.	Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. Understanding a systematic study on		 Being able to understand the importance of geophysics, length and time scales in geophyics, geophysical methods and techniques used in field measurements.
	various methods commonly used in geophysical surveys for examination of sub-surface structures near and beneath the surface including measurements of physical anomalies in a local site.		 Being able to understand gravity method, heterogeneity in rock layers and minerals inside the Earth, vertical variation of density, identification of anomaly in gravity for examination of sub-surface structures near and
3.	Applying a geophysical method selected to identify characteristics of sub-surface structures near and beneath the surface in		beneath the surface.Being able to understand seismology being part of science examining seismic wave propagation
4.	a surveyed site accurately. Understanding differences in geophysical data collection and processing techniques between common geophysical methods in the framework of each method completes the other method and vice versa.		within the body of the Earth near and at the surface, various seismic methods (reflection, refraction, tomography), mechanisms of seismic energy release through earthquakes, differences in events of tectonic or volcanic origin, field surveys and corresponding measurements.
			4. Being able to understand geodynamo processess in the Earth's outer core as the production of geomagnetic field, rock magnetism and mineral magnetics, secondary magnetic fields, susceptibility variation in rock layers, magnetic anomaly, survey methods and measurements of magnetic anomaly.
			5. Being able to understand electricity in the Earth's crust, natural dan artificial sources of geoelectric method, resistivity and conductivity as two electric parameters, Wenner configuration, Schlumberger configuration, Wenner-Schlumberger configuration.
			6. Being able to understand differences in geophysical measurement techniques between natural and artificial sources, a combined method of magnetic and electric approaches or in the form of electromagnetic induction, VLF dan GPR methods for identification of physical structures near the surface.
			 Being able to understand varying surveys and measurement techniques in applied geophysics for exploration of natural resources or other sources that are relevant.

IURUSAN FISIKA	
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM	
UNIVERSITAS NEGERI SURABAYA	
RISET DAN TEKNOLOGI	
KEMENTERIAN PENDIDIKAN, KEBUDAYAAAN,	

Management System ISO 9001:2015 www.tuv.com ID 9108650021

		 Being able to create a poster relevant to lecture materials in Geophysical Methods.
Lecturer	:	Prof. Tjipto Prastowo, Ph.D
Instruction	:	Give $()$ on the column selected: 1. Adequate 2. Good 3. Very Good

No	Acresta	Category				
NO	No Aspects		1	2	3	
1	Instruction for solving the problems				~	
2	Suitability of each question with CLO				~	
3	Level balance of easy, medium and difficult question	ns		 ✓ 		
4	Scoring guidelines follow the points of the mark			~		
5	The duration of completing the questions follows the	e time available			~	
6	Allows multiple alternative correct answers			No		
7	Each question does not depend on other questions			Yes		
8	The questions are communicative and do not have an	mbiguity		✓.		
9	Tables, pictures, graphics, maps, or the like are prese legibly (if any)	ented clearly and				
which on Ge	s agreement between lecturer and students, n is in line with Semester Lesson Plan (SLP) eophysical Methods.	Surabaya, 20 M Validator, Prof. Dr. Madla: NIP 196511051	zim, M	.Si		
Resp	onse from Lecturer:	Surabaya, 21 March 2020 Lecturer, Wasfowo Prof. Tjipto Prastowo, Ph.D NIP 196702031995021001				

D.4.2 Validation Test of Final Exam

KEMENTERIAN PENDIDIKAN, KEBUDAYAAAN, RISET DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA

Kampus Ketintang Jalan Ketintang Gedung C3, Lantai 1 Surabaya 60231 E: physics@unesa.ac.id

VALIDATION SHEET FOR FINAL EXAM

Na	me of Course	:	Geophysical Methods
CL	O:		Sub-CLO:
2.	Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. Understanding a systematic study on various methods commonly used in geophysical surveys for examination of sub-surface structures near and beneath the surface including measurements of physical anomalies in a local site.		 Being able to understand the importance of geophysics, length and time scales in geophyics, geophysical methods and techniques used in field measurements. Being able to understand gravity method, heterogeneity in rock layers and minerals inside the Earth, vertical variation of density, identification of anomaly in gravity for examination of sub-surface structures near and beneath the surface.
3.	Applying a geophysical method selected to identify characteristics of sub-surface structures near and beneath the surface in a surveyed site accurately. Understanding differences in geophysical		 Being able to understand seismology being part of science examining seismic wave propagation within the body of the Earth near and at the surface, various seismic methods (reflection,
	data collection and processing techniques between common geophysical methods in the framework of each method completes the other method and vice versa.		refraction, tomography), mechanisms of seismic energy release through earthquakes, differences in events of tectonic or volcanic origin, field surveys and corresponding measurements.
			 Being able to understand geodynamo processess in the Earth's outer core as the production of geomagnetic field, rock magnetism and mineral magnetics, secondary magnetic fields, susceptibility variation in rock layers, magnetic anomaly, survey methods and measurements of magnetic anomaly.
			 Being able to understand electricity in the Earth's crust, natural dan artificial sources of geoelectric method, resistivity and conductivity as two electric parameters, Wenner configuration, Schlumberger configuration, Wenner-Schlumberger configuration.
			 Being able to understand differences in geophysical measurement techniques between natural and artificial sources, a combined method of magnetic and electric approaches or in the form of electromagnetic induction, VLF dan GPR methods for identification of physical structures near the surface.
			 Being able to understand varying surveys and measurement techniques in applied geophysics for exploration of natural resources or other sources that are relevant.

KEMENTERIAN PENDIDIKAN, KEBUDAYAAAN, RISET DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA

 8. Being able to create a poster relevant to lecture materials in Geophysical Methods.

 Lecturer
 :
 Prof. Tjipto Prastowo, Ph.D

 Instruction
 :
 Give (\frac{1}{2}) on the column selected: 1. Adequate 2. Good 3. Very Good

No	America		Category					
NU	Aspects			2	3			
1	Instruction for solving the problems				~			
2	Suitability of each question with CLO				~			
3	Level balance of easy, medium and difficult question		1					
4	Scoring guidelines follow the points of the mark			~				
5	The duration of completing the questions follows the			~				
6	Allows multiple alternative correct answers			No				
7	Each question does not depend on other questions	Yes						
8	The questions are communicative and do not have an	mbiguity		✓				
9	Tables, pictures, graphics, maps, or the like are prese legibly (if any)							
Methods. Validator,				8 May 2020 adlazim, M.Si 051991031012				
Response from Lecturer:		Surabaya, 9 May 2020 Lecturer, Wastows Prof. Tjipto Prastowo, Ph.D NIP 196702031995021001						

D.5 CLASS ACADEMIC ACHIEVEMENT

PROGRAM STUDI S1 Fisika DAFTAR NILAI MAHASISWA Mata Kuliah : Metode Pengukuran Geofisika Kelas : 2016D Tahun Ajaran : 2019/2020 Genap

Keterangan :

1. Komponen nilai yang diisi hanya : Part,Tugas,UTS dan UAS

2. Nilai UAS mahasiswa dengan kehadiran dibawah 73.3% (kolom dg warna merah) tidak akan disimpan

3. Jangan merubah apapun di dokumen ini kecuali pada point nomer satu di atas.

4. PPTI / BAAK tidak menerima file nilai untuk diupload. Proses upload nilai dilakukan oleh dosen pengampu yang bersangkutan.

No	NIM	Nama Mahasiswa	Angkatan	Kehadiran	Part	Tugas	UTS	UAS	NA	Huruf	Pakai
1	16030224009	AQBEL QASHMAL BILHAQ	2016	93.33%	90	80	78	84	82,8	A-	1
2	16030224033	NEGA BARLIH AMRIH LAKSONO	2016	93.33%	90	80	78	86,5	83,55	A-	1
3	17030224004	FAHIRA NADIVA ERNANDI	2017	100%	90	80	75	84	82,2	A-	1
4	17030224006	TETI APRILIANI	2017	100%	90	85	76	85	84,2	A-	1
5	17030224009	WIDYA RAHMAWATI	2017	100%	90	80	75	81,5	81,45	A-	1
6	17030224010	GANDHIS PUTRI AYUDIA	2017	100%	90	90	85	90	89	А	1
7	17030224012	HILDA RISANTI	2017	100%	90	85	76	90	85,7	А	1
8	17030224013	MOCH. ROMADLON ABDULLOH AKBAR	2017	100%	90	80	78	89	84,3	A-	1
9	17030224022	FIRDA RULIFIANGGA	2017	100%	90	90	85	87,5	88,25	А	1
10	17030224025	IVO NUR KHOLIFAH	2017	100%	90	90	85	87,5	88,25	А	1
11	17030224031	KHARISMA FITROTUL UMMAH	2017	100%	90	80	75	81,5	81,45	A-	1
12	17030224037	ERLIN ANDAYANI DEWI	2017	100%	90	85	76	88	85,1	А	1
13	18030224057	ROIFATU DIANA ZAIN	2018	100%	90	88	85	81	85,7	А	1
14	18030224067	MUSLIMATUL FITRIA	2018	100%	90	88	85	80	85,4	А	1
15	18030224068	QONITAH SALSABILLAH	2018	100%	90	88	85	82	86	А	1