PORTFOLIO FOR STATISTICAL PHYSICS COURSE

SEMESTER 5 ACADEMIC YEAR 2020-2021

Course Coordinator: Prof. Tjipto Prastowo, Ph.D

Teaching Team: Dr. Zainul Arifin Imam Supardi, M.Si Utama Alan Deta, M.Si

PHYSICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES THE STATE UNIVERSITY OF SURABAYA 2021

TABLE OF CONTENT

Cover Page	1
TABLE OF CONTENT	2
A. SEMESTER LEARNING ACTIVITY PLAN	3
A.1 COURSE IDENTITY	3
A.2 COURSE TOPICS	4
A.3 COURSE PROGRAM	5
A.4 MAPPING OF LEARNING OUTCOME-COURSE OUTCOME	14
A.4.1 Program Learning Outcome (PLO) of UPP	14
A.4.2 Program Educational Objective (PEO) of UPP	15
A.4.3 Mapping of PLO-PEO	15
B. COURSE ASSESSMENT	16
B.1 ASSESSMENT RUBRICS	16
B.2 ASSESSMENT SYSTEM	16
B.3 WEIGHT DISTRIBUTION OF ASSESSMENT	16
B.4 STUDENT GRADE SYSTEM	16
C. COURSE DEVELOPMENT	17
C.1 A BRIEF REPORT FOR CLASS RESULTS	17
C.2 ANALYSIS OF CLASS PROBLEMS	17
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS	17
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS	18
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES	18 18
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES	18 18 18
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal	18 18 18 20
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance	18 18 18 20 21
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS	18 18 20 21 21
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS D.2.1 Mid Exam	18 18 20 21 21 23
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS D.2.1 Mid Exam D.2.2 Final Exam	18 18 20 21 21 23 24
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS D.2.1 Mid Exam D.2.2 Final Exam D.3 SAMPLES OF STUDENT PERFORMANCE	18 18 20 21 21 23 24 24
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS D.2.1 Mid Exam D.2.2 Final Exam D.3 SAMPLES OF STUDENT PERFORMANCE D.3.1 Assignment 1	18 18 20 21 21 23 24 24 24 29
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES	18 18 20 21 21 23 24 24 24 29 34
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS D.2.1 Mid Exam D.2.2 Final Exam D.3 SAMPLES OF STUDENT PERFORMANCE D.3.1 Assignment 1 D.3.2 Assignment 2 D.3.3 Student Work on Mid Exam	18 18 20 21 21 23 24 24 24 24 24 38
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS D.2.1 Mid Exam D.2.2 Final Exam D.3 SAMPLES OF STUDENT PERFORMANCE D.3.1 Assignment 1 D.3.2 Assignment 2 D.3.3 Student Work on Mid Exam D.3.4 Student Work on Final Exam	18 18 20 21 21 23 24 24 29 34 38 40
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS D.2.1 Mid Exam D.2.2 Final Exam D.3 SAMPLES OF STUDENT PERFORMANCE D.3.1 Assignment 1 D.3.2 Assignment 2 D.3.3 Student Work on Mid Exam D.3.4 Student Work on Final Exam D.4 VALIDATION TEST	18 18 20 21 21 23 24 24 24 29 34 38 40 40
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS D. APPENDICES D.1 DOCUMENTS OF CLASS ACTIVITIES D.1.1 Weekly Journal D.1.2 Student Attendance D.2 DOCUMENTS OF EXAMS D.2.1 Mid Exam D.2.2 Final Exam D.3 SAMPLES OF STUDENT PERFORMANCE D.3.1 Assignment 1 D.3.2 Assignment 2 D.3.3 Student Work on Mid Exam D.3.4 Student Work on Final Exam D.4 VALIDATION TEST D.4.1 Validation Test of Mid Exam	18 18 20 21 21 23 24 24 24 29 34 38 40 40 41

A. SEMESTER LEARNING ACTIVITY PLAN

A.1 COURSE IDENTITY

Module Name	Statistical Physics
Module Level	Bachelor Degree
Course Code	N/A
Subheading	N/A
Course contained	N/A
Semester/Year	5/3
Module Coordinator	Prof. Tjipto Prastowo, Ph.D
Lecturers	1. Prof. Tjipto Prastowo, Ph.D
	2. Dr. Zainul Imam Supardi, M.Si
	3. Utama Alan Deta, M.Si
Language	Bahasa Indonesia
Course Classification	Compulsory
Teaching format/	A weekly meeting in class for 3 'hours' of teaching
The number of hours per	(1 'hour' of teaching = 50 minutes)
week during semester	
Course Load	1 Course Unit = 3 workhours per week or 170 minutes
	per week with various activities as follows:
	Class Activity: 50 minutes
	Structured Learning: 60 minutes
	 Independent Learning: 60 minutes
	3 Course Units = 9 workhours per week = 510 minutes
	per week
Course Credit	3 Course Units
Pre-requisites	Modern Physics
Course Learning Outcome	1. Demonstrating independent, creative and honest
	characters in doing student assignments, mid and final
	exams.
	2 Understanding theoretical concents of Statistical
	2. Understanding theoretical concepts of Statistical
	Physics in general and Classical Statistics (Maxwell-
	Physics in general and Classical Statistics (Maxwell-
	Physics in general and Classical Statistics (Maxwell- Boltzmann distribution) and Quantum Statistics (Bose-
	Physics in general and Classical Statistics (Maxwell- Boltzmann distribution) and Quantum Statistics (Bose- Einstein and Fermi-Dirac distributions)
	Physics in general and Classical Statistics (Maxwell- Boltzmann distribution) and Quantum Statistics (Bose- Einstein and Fermi-Dirac distributions) comprehensively.
	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. Being able to formulate problem solving for procedural
	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical
Course Content	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical and Quantum Statistics to some statistical phenomena
Course Content	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical and Quantum Statistics to some statistical phenomena found in microscopic systems.
Course Content	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. 3. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical and Quantum Statistics to some statistical phenomena found in microscopic systems. Statistical Physics examines the behaviour of microscopic
Course Content	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical and Quantum Statistics to some statistical phenomena found in microscopic systems. Statistical Physics examines the behaviour of microscopic systems having extremely huge number of constituting
Course Content	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. 3. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical and Quantum Statistics to some statistical phenomena found in microscopic systems. Statistical Physics examines the behaviour of microscopic systems having extremely huge number of constituting particles through an approach of both classical distribution
Course Content	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. 3. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical and Quantum Statistics to some statistical phenomena found in microscopic systems. Statistical Physics examines the behaviour of microscopic systems having extremely huge number of constituting particles through an approach of both classical distribution of Maxwell-Boltzmann Statistics and quantum distribution
Course Content	 Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively. 3. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical and Quantum Statistics to some statistical phenomena found in microscopic systems. Statistical Physics examines the behaviour of microscopic systems having extremely huge number of constituting particles through an approach of both classical distribution of Maxwell-Boltzmann Statistics and quantum distribution of Bose-Einstein and Fermi-Dirac Statistics. During class

	include ideal and real gases, boson and fermion gases, classical and semi-classical gases, Gibbs paradox, entropy of classical and semi-classical gases, monoatomic and diatomic gases, the specific heat of monoatomic and diatomic gases, the specific heat of solids based on classical and quantum calculations, and total partition function in the presence of molecular interaction, and the introduction of concepts of micro canonical, canonical and grand canonical ensembles.
Attributed soft skill	Collaborative work in a group of students
References and sources	 Prastowo, T. 2014. Lecture Notes on Statistical Physics. Unpublished work. Pointon, A. J. 1978. An Introduction to Statistical Physics. London, UK: Longmann. Beiser, A. 1988. Perspective of Modern Physics. London, UK: McGraw-Hill. Serway, R. A. et al. 2005. Modern Physics. California, US: Thomson Learning Inc. Kittel, C. and H. Kroemer. 1980. Thermal Physics. New York, US: W. H. Freeman and Co. Some power point files and/or course materials relevant to Statistical Physics from the internet.

A.2 COURSE TOPICS

Class discussions involve the following learning materials:

- 1. General consideration: statistical distribution function, phase space, scopes of Statistical Physics
- 2. Velocity, momentum and kinetic energy distribution functions, the applications of Maxwell-Boltzmann Statistics, equipartition principle and the specific heat of gases, Boltzmann partition function
- 3. Boson system and its population, Bose-Einstein gas, the applications of Bose-Einstein Statistics, thermal radiation of the black-body, photon as boson, Planks' radiation law
- 4. Boson system and its population, Bose-Einstein gas, the applications of Bose-Einstein Statistics, calculations of the specific heat of solids, phonon as boson, Einstein theory, Debye theory
- 5. Fermion system and its population, Fermi-Dirac gas, the applications of Fermi-Dirac Statistics, conduction electrons as fermion, Fermi theory
- 6. Fermion system and its population, Fermi-Dirac gas, the applications of Fermi-Dirac Statistics, calculations of the specific heat of metals
- 7. Thermodynamics of gases based on classical and quantum statistical distributions, concepts of entropy, open and closed systems
- 8. Concepts of entropy, a change in entropy, classical and semi-classical gases, Gibbs paradox
- 9. Diatomic gases, quantum model of translational, rotational and vibrational motions, total partition function for diatomic gases
- 10. Ensembles of micro canonical, canonical, grand canonical systems, total partition functions of classical and semi-classical systems, total partition function in the presence of molecular interaction

A.3 COURSE PROGRAM

THE STATE UNIVERSITY OF SURABAYA FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICS STUDY PROGRAM

Document

Code

			SEM	ESTER LE	SSON PLAN				
NAME OF COURSE			COURSE CODE	DISCIPL	INE	COURSE UN	IT	SEMESTER	DATE CREATED
STATISTICAL PHYSICS				PHYSIC	5	T= 3 units	P=?	5 (five)	2 August 2020
AUTHORISATION PHYSICS DEPARTMENT			AUTHOR		COURSE COORDINATO	DR		HEAD OF PHYSICS STUDY PROGRAM	
			Prof. Tjipto Prastowo,	Ph.D	Prof. Tjipto Prastowo,	Ph.D		Prof. Dr. Muna	sir, M.Si
Learning Achievement	Program Lea	arning Outco	me (PLO)					-	
	PLO1	Students a	re able to demonstrate	knowledge o	f Classical Physics and M	odern Physics			
	PLO2	Students a	re able to formulate a p	hysical syster	ms as physical model by	using mathem	atics.		
	PLO6	Students a	re able to improve their	[•] knowledge a	and continue their study	in a higher ed	ucation		
	PLO9		Student are able to work as an individual as well as a team effectively, have entrepreneurship skill and awareness of environmental issues.					ness of	
	Course Lear	ning Outcom	e (CLO)						
	CLO-1	Demonstra	ating independent, creat	tive and hone	est characters in doing st	udent assignn	nents, m	id and final exan	ıs.
	CLO-2				al Physics in general and		stics (M	axwell-Boltzman	n distribution) and
					rac distributions) compre				
	CLO-3	-	•		ocedural problems releva	int to the app	lications	of both Classical	and Quantum
		Statistics to	o some statistical pheno	mena found	in microscopic systems.				
	Final compe	-	h step of learning (Sub-	•					
	Sub-CLO1	Being able	to understand difference	ces between	microscopic and macroso	copic systems	as well	as laws of physics	s control the two.
	Sub-CLO2	Being able	to understand basic pri	nciples of Ma	xwell-Boltzmann Statisti	cs to derive so	ome phy	sical distribution	function and
		its applicat	its applications to the structure of an ideal gas in general, equipartition principle and the specific heat of gases.						
	Sub-CLO3	Being able	Being able to understand basic principles of Bose-Einstein Statistics and its applications to black-body radiation.					n.	
	Sub-CLO4	Being able	to understand basic pri	nciples of Bo	se-Einstein Statistics and	its application	ns to the	e specific heat of	solids.
1	Sub-CLO5	Being able	to understand basic pri	nciples of Fer	mi-Dirac Statistics and it	s applications	to cond	uction electrons	on metals.

	Sub-CLO6	Being able to understand basic principles of Fermi-Dirac Statistics and its applications to the specific heat of metals.					
	Sub-CLO7	Being able to understand basic principles of thermodynamics of gases based on classical and quantum statistics, concepts of					
	505 6207	entropy for open and closed systems.					
	Sub-CLO8	Being able to understand basic principles of thermodynamics of gases based on classical and quantum statistics, concepts of					
		entropy and a change in entropy of a system, classical gases, Gibbs paradox, semi-classical gases.					
	Sub-CLO9	Being able to understand basic principles of quantum model of diatomic gases, a combined motion of molecular translation,					
		rotation and vibration, total partition function for diatomic gases.					
	Sub-CLO10	Being able to understand ensemble model for description of microscopic systems, the role of total partition function in formulation of Helmholtz energy to derive the equation of state and total energy of gases with or without the presence of molecular interaction.					
Course Description	Statistical Physics examines the behaviour of microscopic systems having extremely huge number of constituting particles through an approach of both classical distribution of Maxwell-Boltzmann Statistics and quantum distribution of Bose-Einstein and Fermi-Dirac Statistics. During class discussion, differences among the three statistical distribution are explained. The applications of the classical and quantum statistical distribution are discussed that include ideal and real gases, boson and fermion gases, classical and semi-classical gases, Gibbs paradox, entropy of classical and semi-classical gases, monoatomic and diatomic gases, the specific heat of monoatomic and diatomic gases, the specific heat of solids based on classical and quantum calculations, and total partition function in the presence of molecular interaction, and the introduction of concepts of micro canonical, canonical and grand canonical ensembles.						
Topic Discussions:		onsideration: statistical distribution function, phase space, scopes of Statistical Physics					
Learning Materials		nomentum and kinetic energy distribution functions, the applications of Maxwell-Boltzmann Statistics, equipartition principle and					
		neat of gases, Boltzmann partition function					
		tem and its population, Bose-Einstein gas, the applications of Bose-Einstein Statistics, thermal radiation of the black-body, photon as s' radiation law					
	4. Boson syst	tem and its population, Bose-Einstein gas, the applications of Bose-Einstein Statistics, calculations of the specific heat of solids, oson, Einstein theory, Debye theory					
	5. Fermion s 6. Fermion s 7. Thermody	ystem and its population, Fermi-Dirac gas, the applications of Fermi-Dirac Statistics, conduction electrons as fermion, Fermi theory ystem and its population, Fermi-Dirac gas, the applications of Fermi-Dirac Statistics, calculations of the specific heat of metals namics of gases based on classical and quantum statistical distributions, concepts of entropy, open and closed systems of entropy, a change in entropy, classical and semi-classical gases, Gibbs paradox					
	9. Diatomic g 10. Ensemble	gases, quantum model of translational, rotational and vibrational motions, total partition function for diatomic gases es of micro canonical, canonical, grand canonical systems, total partition functions of classical and semi-classical systems, total ction in the presence of molecular interaction					
References	Primary:						
	-	T. 2014. Lecture Notes on Statistical Physics. Unpublished work. J. 1978. An Introduction to Statistical Physics. London, UK: Longmann.					

	 Beiser, A. 1988. Perspective of Modern Physics. London, UK: McGraw-Hill. Serway, R. A. et al. 2005. Modern Physics. California, US: Thomson Learning Inc. Kittel, C. and H. Kroemer. 1980. Thermal Physics. New York, US: W. H. Freeman and Co. Secondary: Some power point files and/or course materials relevant to Statistical Physics from the internet							
Lecture	ers	1. Prof. Tjipt 2. Dr. Z.A. In	o Prastowo, Ph.D nam Supardi, M.Si an Deta, M.Si					
Bit Station Pre-requisites Modern F Week Final competence in each learning step (Sub-CLO)					Learning Format, Methods, Instruction, (Time Allocation)		Learning Materials	Proportion (%)
		(Indicator	Criteria & Format	Luring (offline)	Daring (online)	-	
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)
1	Being able to un differences betw microscopic and macroscopic sys as laws of physi the two system	ween d stems as well cs control	Students can explain differences between microscopic and macroscopic systems as well as laws of physics control the two systems			Contextual Learning Class discussion Q & A	 General consideration Statistical distribution function Phase space Scopes of Statistical Physics 	
2	Being able to un basic principles Boltzmann Stati derive some phy distribution fun its applications structure of an general, equipa	of Maxwell- istics to ysical ction and to the ideal gas in	Students can explain basic principles of Maxwell- Boltzmann Statistics to derive some physical			Contextual Learning Class discussion Q & A	 Velocity, momentum and kinetic energy distribution functions The applications of Maxwell- Boltzmann 	

	principle and the specific heat of gases	distribution function and its applications to the structure of an ideal gas in general, equipartition principle and the specific heat of gases			Statistics • Equipartition principle • The specific heat of gases	
3	Being able to understand basic principles of Maxwell- Boltzmann Statistics to derive some physical distribution function and its applications to the structure of an ideal gas in general, equipartition principle and the specific heat of gases	Students can explain basic principles of Maxwell- Boltzmann Statistics to derive some physical distribution function and its applications to the structure of an ideal gas in general, equipartition principle and the specific heat of gases		Contextual Learning Class discussion Q & A	 Velocity, momentum and kinetic energy distribution functions The applications of Maxwell- Boltzmann Statistics Equipartition principle The specific heat of gases 	
4	Being able to understand basic principles of Maxwell- Boltzmann Statistics to derive some physical distribution function and its applications to the	Students can explain basic principles of Maxwell- Boltzmann Statistics to	Exercise on Chap. 2, Lecture Notes on Satistical Physics (Assignment 1)	Contextual Learning Class discussion Q & A	 The applications of Maxwell- Boltzmann Statistics Equipartition principle 	10%

5	structure of an ideal gas in general, equipartition principle and the specific heat of gases Being able to understand basic principles of Bose- Einstein Statistics and its applications to black-body radiation	derive some physical distribution function and its applications to the structure of an ideal gas in general, equipartition principle and the specific heat of gases, solve problems relevant to Maxwell- Boltzmann Statistics Students can explain basic principles of Bose-Einstein Statistics and its applications to black-body radiation	Contextual Learning Class discussion Q & A	 The specific heat of gases Boltzmann partition function Boson function Boson system and its population Bose-Einstein gas The applications of Bose-Einstein Statistics Thermal radiation of the black-body Photon as boson Planks' radiation
6	Being able to understand	Students can	Contextual Learning	law • Boson system and
	basic principles of Bose-	explain basic	Class discussion	its populatioN
	Einstein Statistics and its	principles of	Q & A	 Bose-Einstein gas
	applications to the specific	Bose-Einstein		• The applications of
	heat of solids	Statistics and its applications to		Bose-Einstein Statistics

		the specific heat of solids			 Calculations of the specific heat of solids phonon as boson Einstein theory Debye theory 	f
7	Being able to understand basic principles of Bose- Einstein Statistics and its applications to the specific heat of solids	Students can explain basic principles of Bose-Einstein Statistics and its applications to the specific heat of solids, solve problems relevant to Bose-Einstein Statistics	Exercise on Chap. 3, Lecture Notes on Statistical Physics (Assignment 2)		 tual Learning Boson system and its population Bose-Einstein gas The applications of Bose-Einstein Statistics Calculations of the specific heat of solids phonon as boson Einstein theory Debye theory 	f
8	Mid Semester Exam			· · · · · ·	i i	30%
9	Being able to understand basic principles of Fermi- Dirac Statistics and its applications to conduction electrons on metals	Students can explain basic principles of Fermi-Dirac Statistics and its applications to conduction electrons on metals			 tual Learning Fermion system and its population Fermi-Dirac gas The applications of Fermi-Dirac Statistics Conduction electrons as fermion Fermi theory 	
10	Being able to understand basic principles of Fermi- Dirac Statistics and its applications to the specific heat of metals	Students can explain basic principles of Fermi-Dirac Statistics and its	Exercise on Chap. 4, Lecture Notes on Statistical Physics (Assignment 3)		 tual Learning iscussion Fermion system and its population Fermi-Dirac gas The applications of Fermi-Dirac 	

		applications to the specific heat of metals, solve problems relevant to Fermi-Dirac Statistics		Statistics • Calculations of the specific heat of metals
11	Being able to understand basic principles of thermodynamics of gases based on classical and quantum statistics, concepts of entropy for open and closed system	Students can basic principles of thermodynamic s of gases based on classical and quantum statistics, concepts of entropy for open and closed system	Contextual Learning Class discussion Q & A	 Thermodynamics of gases based on classical and quantum statistical distributions Concepts of entropy Open and closed systems
12	Being able to understand basic principles of thermodynamics of gases based on classical and quantum statistics, concepts of entropy for open and closed system	Students can basic principles of thermodynamic s of gases based on classical and quantum statistics, concepts of entropy for open and closed system	Contextual Learning Class discussion Q & A	 Thermodynamics of gases based on classical and quantum statistical distributions Concepts of entropy Open and closed systems
13	Being able to understand basic principles of thermodynamics of gases	basic principles of thermodynamic	Contextual Learning Class discussion Q & A	Concepts of entropy A change in

	based on classical and quantum statistics, concepts of entropy and a change in entropy of a system, classical gases, Gibbs paradox, semi-classical gases	s of gases based on classical and quantum statistics, concepts of entropy and a change in entropy of a system, classical gases, Gibbs paradox, semi- classical gases		entropy • Classical and semi- classical gases • Gibbs paradox
14	Being able to understand basic principles of quantum model of diatomic gases, a combined motion of molecular translation, rotation and vibration, total partition function for diatomic gases	Students can explain basic principles of quantum model of diatomic gases, a combined motion of molecular translation, rotation and vibration, total partition function for diatomic gases	Contextual Learning Class discussion Q & A	 Diatomic gases Quantum model of translational, rotational and vibrational motions Total partition function for diatomic gases
15	Being able to understand ensemble model for description of microscopic systems, the role of total partition function in formulation of Helmholtz energy to derive the	Students can explain ensemble model for description of microscopic systems, the	Contextual Learning Class discussion Q & A	 Ensembles of micro canonical, canonical, grand canonical systems Total partition functions of classical and semi-

	equation of state and total	role of total	classical systems	
	energy of gases with or	partition	Total partition	
	without the presence of	function in	function in the	
	molecular interaction	formulation of	presence of	
		Helmholtz	molecular	
		energy to derive	interaction	
		the equation of		
		state and total		
		energy of gases		
		with or without		
		the presence of		
		molecular		
		interaction		
16	Final Exam			40%

A.4 MAPPING OF LEARNING OUTCOME-COURSE OUTCOME

Competency of SSC-ASIIN	Component	Code	Programme Learning Outcome (PLO)
Specific	Knowledge	KNO-1	Able to demonstrate knowledge of Classical
competences		(PLO1)	Physics and Modern Physics
		KNO-2	Able to formulate a physical systems as physical
		(PLO2)	model by using mathematics
		KNO-3	Able to solve problems in physical systems
		(PLO3)	comprehensively by using mathematics and computational tools
	Skill	SKI-1	Able to analyze a physical system by applying
		(PLO4)	mathematics and computational tools/ICT
		SKI-2	Able to design and conduct experiments in
		(PLO5)	learning physics by applying the scientific methods
		SKI-3	Able to improve their knowledge and be able to
		(PLO6)	continue their study in a higher education
		SKI-4	Able to communicate their ideas and/or research
		(PLO7)	results in academic writing and speaking effectively
Social and	Social	SOC-1	Able to make a decision based on the data and
attitude		(PLO8)	information in order to fulfil and evaluate their
competences		SOC-2	task responsibility Able to work as an individual as well as a team
		(PLO9)	effectively, have entrepreneurship skill and
		(PLO9)	awareness of environmental issues
	Attitude	ATT-1	Able to demonstrate good scientist's manners,
		(PLO10)	critical thinking and innovation skills in research
			and professional fields; and willing to do lifelong
			learning
		ATT-2	Able to demonstrate the appreciation of
		(PLO11)	religious values, and nationalism as citizens as well as conducting their tasks professionally
			wen as conducting their tasks professionally

A.4.1 Program Learning Outcome (PLO) of UPP

A.4.2 Program Educational Objective (PEO) of UPP

- 1. Produce Bachelor of Physics who are able to use physics knowledge and methodology to solve problems in their work field.
- 2. Produce Bachelor of Physics who have a strong commitment to developing knowledge, whether by studying in a higher-level degree working in a formal institution and entrepreneurs.
- 3. Produce Bachelor of Physics who master the scientific method to observe, analyze and understand physical phenomena, and produce scientific work and contribute according to their expertise.
- 4. Produce Bachelor of Physics who masteries physics that is able to apply their knowledge, expertise in various fields of work, and develop themselves in their career environment.
- 5. Produce Bachelor of Physics who can communicate orally and/ in writing effectively, creatively, innovatively, and collaboratively, as well as working in teams.

	Objectives									
Outcomes	Produce Bachelor of Physics who are able to use physics knowledge and methodology to solve problems in their work field.	Produce Bachelor of Physics who have a strong commitment to developing knowledge, whether by studying in a higher-level degree working in a formal institution and entrepreneurs.	Produce Bachelor of Physics who master the scientific method to observe, analyze and understand physical phenomena, and produce scientific work and contribute according to their expertise.	Produce Bachelor of Physics who masteries physics that is able to apply their knowledge, expertise in various fields of work, and develop themselves in their career environment.	Produce Bachelor of Physics who can communicate orally and/ in writing effectively, creatively, innovatively, and collaboratively, as well as working in teams.					
PLO-1	S	S	S	S	S					
PLO-2	S	S	S	S	S					
PLO-3	S	S	S	S	S					
PLO-4	S	S	S	S	S					
PLO-5	S	М	S	М	S					
PLO-6	S	М	S	S	М					
PLO-7	S	S	S	М	S					
PLO-8	S	М	S	М	S					
PLO-9	S	М	S	М	S					
PLO-10	М	М	М	М	S					
PLO-11	М	М	М	S	S					

A.4.3 Mapping of PLO-PEO

Notes:

S = Strong, M = Moderate, L = Low

B. COURSE ASSESSMENT

B.1 ASSESSMENT RUBRICS

N/A.

B.2 ASSESSMENT SYSTEM

Final grade for each student is obtained from each component of assessment below,

Assignments 1 and 2	: 30%
Mid Exam	: 30%
Final Exam (Assignment 3)	: 40%

B.3 WEIGHT DISTRIBUTION OF ASSESSMENT

Component	CLO-1	CLO-2	CLO-3	TOTAL
Assignments 1 and 2	20	40	40	100
Mid Exam	40	40	20	100
Final Exam	20	30	50	100

Notice that all numerical data in the above table are given in per cent.

B.4 STUDENT GRADE SYSTEM

Final grade for each student is classified below according to a total score obtained,

Excellent	: if a total score is greater than or equal to 80
Good	: if a total score is greater than or equal to 70
Satisfactory	: if a total score is greater than or equal to 55
Failed	: if a total score is less than 55

Grade	Interval					
А	85 ≤ A <100					
A-	80 ≤ A- < 85					
B+	75 ≤ B+ < 80					
В	70 ≤ B < 75					
В-	65 ≤ B- < 70					
C+	60 ≤ C+ < 65					
С	55 ≤ C < 60					
D	40 ≤ D < 55					
E	0 ≤ E < 40					

C. COURSE DEVELOPMENT

C.1 A BRIEF REPORT FOR CLASS RESULTS

The following table reports student academic achievement during the course.

Parameter	Ν	N in per cent
The number of students taking the subject	34	100
The number of students who has passed the course during a normal time	34	100
The number of students who has passed the course by a remedial treatment	-	-
The number of students who has failed the course after taking a remedial treatment	-	-

C.2 ANALYSIS OF CLASS PROBLEMS

Class achievement is recorded successful with three students scored between 55 and 70, classified as satisfactory, 19 students scored between 70 and 80, classified as good and other 12 students scored greater than 80, classified as excellent. The final scores were distributed to grades C, B-, B, B+, A- and A.

C.3 STRATEGY FOR ALTERNATIF SOLUTIONS

N/A. All the students have passed the course.

D. APPENDICES

D.1 DOCUMENTS OF CLASS ACTIVITIES

D.1.1 Weekly Journal

SIAKADU: Cetak Jurnal Perkuliahan

7/20/2021

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI

UNIVERSITAS NEGERI SURABAYA

Kampus Ketintang Jalan Ketintang, Surabaya 60231 T: +6231-8293484 F: +6231-8293484 Jaman: unesa.ac.id email : bakpk@unesa.ac.id

Aktivitas Perkuliahan

Kelas : 2018E			UTAMA	ALAN DETA (1	9890317201504100			
ladwal	& Ruang : C03.03	.02 (14.40 - 17.10)	R.					
No.			Topik	Peserta	Status	Dosen		
1	16-09-2020	Pertemuan ke 1	 Penjelasan RPS Fisika Statistik Penjelasan tugas, sistem evaluasi dan asesmen perkuliahan Fisika Statistik Materi Bab 1 Lecture Notes on Statistical Physics Sistem makroskopis vs sistem mikroskopis Besaran empiris vs besaran mikroskopis Pengertian Ruang Fasa Distribusi Statistik Klasik vs Distribusi Statistik Kuantum 	ielasan RPS 34 Terjadwal Tjipto Pr a Statistik jelasan tugas, m evaluasi dan men juliahan Fisika stik eri Bab 1 ure Notes on istical Physics m m mikroskopis iran empiris vs iran roskopis gertian Ruang ribusi Statistik ik vs Distribusi istik Kuantum				
2	23-09-2020	Pertemuan ke 2	 Fungsi distribusi statistik Statistik Maxwell- Boltzmann Fungsi distribusi kecepatan, momentum, energi Kecepatan rata- rata, kecepatan rms, kecepatan yang paling mungkin Teori ekipartisi 	34	Terjadwal	Tjipto Prastowo		
3	30-09-2020	Pertemuan ke 3	1. Aplikasi statistik Maxwell- Boltzmann 2. Teori ekipartisi 3. Kalor jenis gas ideal 4. Persamaan keadaan gas ideal 5. Penjelasan PR	34	Terjadwal	Tjipto Prastowo		

https://siakadu.unesa.ac.id/977c8e08-3592-3c0c-8fc3-2b56de79a537.aspx?id=1aa9a63d-8e33-3a13-9ae2-54e2ef8062dd&cetak_jurnal=1

1/2

7/20/2021			SIAKADU: Cetak Jurnal	Perkullahan		
		ke 4	2. Populasi Boson 3. Gas Bose-Einstein			
5	14-10-2020	Pertemuan ke 5	1. Gas Bose-Einstein 2. Aplikasi Statistik Bose-Einstein 3. Konsep Fonon 4. Kalor Jenis Zat Padat 5. Temperatur Einstein	34	Terjadwal	Tjipto Prastowo
6	21-10-2020	Pertemuan ke 6	1. Sistem Fermion 2. Populasi Fermion 3. Gas Fermi-Dirac	34	Terjadwal	Tjipto Prastowo
7	28-10-2020	Pertemuan ke 7	 Gas Fermi-Dirac Aplikasi Statistik Fermi-Dirac Kontribusi elektron konduksi Konsep Energi Fermi, Kecepatan Fermi, Temperatur Fermi Sifat konduktivitas logam Persiapan UTS 	34	Terjadwal	Tjipto Prastowo
8	04-11-2020	Pertemuan ke 8	UTS	34	Terjadwal	Tjipto Prastowo
9	11-11-2020	Pertemuan ke 9	Aplikasi Statistik Fermi- Dirac (1)	34	Terjadwal	Utama Alan Deta
10	18-11-2020	Pertemuan ke 10	Aplikasi Statistik Fermi- Dirac (2)	34	Terjadwal	Utama Alan Deta
11	25-11-2020	Pertemuan ke 11	Termodinamika Gas (1)	34	Terjadwal	Utama Alan Deta
12	02-12-2020	Pertemuan ke 12	Termodinamika Gas (2) 34		Terjadwal	Utama Alan Deta
13	09-12-2020	Pertemuan ke 13	Termodinamika Gas (3) 34 Terjadwal U		Utama Alan Deta	
14	16-12-2020	Pertemuan ke 14	Ensembel Kanonik, Grand Kanonik, dan Mikrokanonik (1)	34	Terjadwal	Utama Alan Deta
15	23-12-2020	Pertemuan ke 15	Ensembel Kanonik, Grand Kanonik, dan Mikrokanonik (2)	34	Terjadwal	Utama Alan Deta

https://siakadu.unesa.ac.id/977c6e06-3592-3c0c-8fc3-2b56de78a537.aspx?id=1aa9a63d-8e33-3a13-9ae2-54e2ef6062dd&cetak_jurnal=1

2/2

D.1.2 Student Attendance

7/20/2021

SIAKAD : Absen

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

UNIVERSITAS NEGERI SURABAYA

JL Lidah Wetan, Surabaya - 60213 Telepon :+6231-99424932 Faksimile :+6231-99424932 e-mail :bakpk@unesa.ac.id

Dosen

PRESENSI KULIAH Periode 2020/2021 Gasal

Mata Kuliah Kelas Prodi

: Fisika Statistik : 2018E : S1 Fisika : Prof. Tjipto Prastowo, Ph.D. Utama Alan Deta, S.Pd., M.Pd., M.Si.

			Pertemuan Ke															
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
No	NIM	Nama Mahasiswa	16	23	30	07	14	21	28	04	11	18	25	02	09	16	23	1 %
			Sep	Sep	Sep	Oct	Oct	Oct	Oct	Nov	Nov	Nov	Nov	Dec	Dec	Dec	Dec	
			20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
1.	18030224035	SILVI RAHMAWATI WIBOWO	н	н	н	н	н	Н	н	н	н	Н	н	н	н	н	н	100 %
2.	18030224036	SILVIE PUSPA ANGGRAINI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 %
З.	18030224037	ILMA AULIA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
4.	18030224038	FUNNY QORRY AIN	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
5.	18030224039	MOCHAMMAD ANANG MUSTAGHFIRI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
6,	18030224040	SARI DEWI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 %
7.	18030224041	NURUL LATHI FATUL CHAMIDAH	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 %
8.	18030224042	SANIA NUR FAIZA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
9.	18030224043	LULU NUR MAULIDA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
10,	18030224044	AJENG DWI ANTIKA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
11.	18030224045	ISNA RAHMAWATI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
12.	18030224046	MUSYAROFAH DWI NUR LAILY	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
13.	18030224047	NUR IKA DWI LESTARI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
14.	18030224048	TIA NUR AGUSTIN	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
15.	18030224049	DANIAR KARTIKA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 %
16.	18030224050	KHOIROTIN	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
17.	18030224051	MUHAMMAD ASYROFUL UMAM	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
18,	18030224052	EKA NURUL HIDAYAH	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
19.	18030224053	FARAH KHALIDAH KHANSA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 %
20.	18030224054	FANHARIS CHUZAINI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
21.	18030224056	IKA WAHYU KINNASIH	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
22.	18030224057	ROIFATU DIANA ZAIN	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
23.	18030224058	CANDRA DININGSIH	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
24.	18030224059	ARSHA BAYU RAHANTI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
25.	18030224060	ANGELINA OKTA VIRONIKA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
26.	18030224061	ANGGRAINI DWI OKTAVIA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
27.	18030224062	FIRLY MAULIDYA ANGGRAYNI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
28.	18030224063	YEKTI PURNAMA UTAMI	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
29.	18030224064	ASEP MUGNI MUAMMAR	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
30.	18030224065	WIN NATASHA KHARISMA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
31.	18030224066	SYAH NANTA MAULANA ISHAK	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
32.	18030224067	MUSLIMATUL FITRIA	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
33.	18030224068	QONITAH SALSABILLAH	H	н	н	н	н	H	н	H	н	H	н	H	н	н	H	100 9
34.	18030224069	HIKMATUL MAULIDAH	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 9
	Tanda	Tangan Dosen / Asisten																

1/1

https://siakadu.unesa.ac.id/604419d3-5/73-37d1-6049-b06c7763baba.aspx?print=1aa9a63d-6e33-3a13-9ae2-54e2ef8062dd&jns=absen&smt=20201

D.2 DOCUMENTS OF EXAMS

D.2.1 Mid Exam

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA

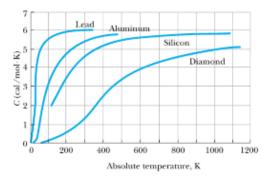
Kampus Ketintang Jalan Ketintang Gedung C3 Lantai 1 Surabaya 60231 E physics@unesa.ac.id fisika.fmipa.unesa.ac.id

MID-SEMESTER EXAM SEMESTER ODD YEAR 2020/2021

cal Physics
Prastowo, Ph.D
Alan Deta, M.Pd., M.Si
ysics / 2018E
sday, 4 November 2020
nutes / 3.00 – 4.40 pm
Book

HINTS: Please write carefully your answers to the following questions using all possible sources of study (your notes on weekly discussion on course materials, Lecture Notes on Statistical Physics, relevant files, internet).

15 point.


(a) Explain clearly fundamental differences between Maxwell-Boltzmann statistics, Bose-Einstein statistics, and Fermi-Dirac statistics. (CLO 1, 2)

25 point.

(b) Derive two separate conditions associated with particle population density and a constant A in Lecture Notes on Statistical Physics, where Bose-Einstein Gas representing phonons and Fermi-Dirac Gas representing conduction electrons on metals can be, in some sense, regarded as classical systems for particular limits. (CLO 1, 2)

2. 60 point.

Classical physics states that the specific heat cv of solids is independent of temperature hence constant at all ranges of temperature, that is, cv = 3R where R = 8.3 Jmol⁻¹K⁻¹ is universal gas constant. Such a statement is contradictory to empirical facts arguing for the dependence of the specific heat on temperature in particular in a low temperature regime, as illustrated below.

www.unesa.ac.id "Growing with character"

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3 Lantai 1 Surabaya 80231 E physics@unesa.ac.id fisika.fmipa.unesa.ac.id

- (a) Show that the specific heat c_V of solids according to Einstein model for atomic vibration in solids is 5.5 kal mol⁻¹K⁻¹ at temperature of T=T_E where T_E is Einstein temperature.
- (b) Determine Einstein temperatures TE for lead, aluminum, and silicon.
- (c) Calculate the gap in energy for lead, aluminum, and silicon.
- (d) Calculate the oscillator mean energy for lead, aluminum, and silicon at temperature 300 K. (CLO 1, 2, 3)

www.unesa.ac.id Growing with character"

D.2.2 Final Exam

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3 lt. 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

FINAL-SEMESTER EXAM SEMESTER ODD YEAR 2020/2021

Course	: Statistical Physics
Lecturer	: Prof. Tjipto Prastowo, Ph.D.
	Dr. Z.A. Imam Supardi, M.Si.
	Utama Alan Deta, M.Si.
Study Programme / Class	: Physics/ FD 2018 and FE 2018
Date	: 6 January 2020
Duration / Time	: 100 menit
Test Format	: Open-Book

HINTS: Please write carefully your answers to the following questions using all possible sources of study (your notes on weekly discussion on course materials, Lecture Notes on Statistical Physics, relevant files, internet).

 Electrons in the metal can be an additional factor that affects the specific heat of metals. Using Fermi-Dirac Statistics, explain this phenomenon! How do electrons and phonons contribute to the specific heat of metals?

Score 30 (CLO 1,3)

- 2. An assembly contains classical systems which can only have two energy levels, $E_1 = 0$ and $E_2 = \varepsilon$. The number of systems in the assembly is N and volume of the assembly is V. Let n_2 be the number of particles occupying the energy level E_2 , $n_1 = N n_2$ be the number of particles occupying the energy level E_1 , and the total energy of the particles is $U = n_2\varepsilon$; then:
 - a. Specify the total partition function of the system!
 - b. Determine the total energy of the system!
 - c. Determine the heat capacity at the constant volume of the system!

Score 40 (CLO 1,2)

3. Explain the differences and provide examples (at least 3 examples) along with explanations about Canonical, Grand Canonical, and Micro Canonical Ensembles!

Score 30 (CLO 1,3)

www.unesa.ac.id | "Growing with character"

D.3 SAMPLES OF STUDENT PERFORMANCE

D.3.1 Assignment 1

	TUGAS FIISIIKA S	TATISTIK	
Nama kelon	npok : 1. Nurul Lathii Fatul Ch 2. Musyarofah Owi Nu	namidah (041) r Lawý (046)	(a)
	3. The Nur Agustin (O		
	4. Arsha Bayu Rahan	in (Osg)	
kelas	: 2018 E		
			a
I. Buktikan	rumus dari Vave = $\sqrt{\frac{0 \text{kT}}{\pi m}}$		
jawas: Va	are = ŠVF(V)dV		
dı	mana, $F(Y) = AT \left(\frac{m}{2\pi \kappa T}\right)^{3/2} e^{-\frac{3}{2}}$	12 mV ² /kT V ²	
5	ehinaga Persamaannya menjadi	(),	
	Vowe = $\int V \left[4\pi \left(\frac{m}{2\pi kT} \right)^{3/2} e^{-\frac{k}{2}} \right]$	mV*/KT V2]d∨	1) 10
k	carena $4\pi \left(\frac{m}{2\pi\kappa^{2}}\right)^{3/2}$ adalah ka	onstanta Maka.	A CONTRACTOR OF THE OWNER
1	Vave = 41 $\left[\frac{m}{2\pi kT}\right]^{3/2}$ $\int e^{\frac{1}{2}m}$	v*/*T v3 dv	1
	Penan menanunakan prisaman	n 2.a. yaitu	0.945
	$\int_{0}^{\infty} x^{n} e^{ax^{2}} dx = \frac{1}{2a^{(n+1)}}$	$\int \int (\underline{n+1})$	
	20 ⁽ⁿ⁺¹⁾	1/2 (2)	
6	dapat diketahui bahwa	+	
,	n=3 $a=1$ m/kT dan dimis	ialkan sebagai Cz dan 4	T(m) ^{orz} dimisalkan ci
			(200)
	Seningga dapat clibuliskan Vave = Ci ("V ² e ^{-CeV²}		and the second se
	Voue = Ci V*e		
	$= C_1 \left[\frac{2C_2^{(3+1)/2}}{2C_2^{(3+1)/2}} \int \left(\frac{3+1}{2} \right) \right]$		
	$\frac{1}{2\zeta_{1}^{*}} \left(\frac{1}{2\zeta_{2}^{*}} \right)^{*} (2)$		
	= C1. <u>1</u> 11 '		
	* <u>1</u> G		- 10
and the second	P.4		
		,	

Mensubhlusikan kembali Ci dan Cz ke daiam persamaan, sehingga menjadi $Vave = \frac{1}{2} \left(\frac{2\kappa T}{m} \right)^2 \cdot 4\pi \left(\frac{m}{4\pi \kappa T} \right)^{3/2}$ $= \frac{1}{2} \left(\frac{2\kappa T}{m} \right)^2$ 1 VE VE VE (2 KT) 3/2 $=\frac{1}{2}\left(\frac{2\kappa\overline{1}}{m}\right)$ $\frac{\sqrt{E}}{4} \left(\frac{2\kappa T}{m}\right)^{3/2}$ $\frac{2}{\sqrt{\pi}} \left(\frac{2\kappa T}{m}\right)^{\frac{1}{2}}$ atau 2 2KT .Vit m Dan persamaan menjadi Vave = OKT TIM 2. Builtikan bahwa rumus Vrms = $\sqrt{\frac{3 \kappa T}{m}}$ m Jawab : Dimana Vrms adalah (12)ave dengan, (V) ave = (V= F(V) dV $Dan F(v) = 4\pi \left(\frac{m}{2\pi \kappa r}\right)^{3/2} e^{-\frac{1}{2}mv^2/\kappa r} v^2$ sehingga persamaan menjadi $(v)_{ave}^{2} = \int_{0}^{u} v^{2} \left[4\pi \left(\frac{m}{e^{\pi kT}}\right)^{3/2} e^{-\frac{1}{2}mv/kT} v^{2} \right] dv$ karena 41 $\left(\frac{m}{2\pi \kappa^{-}}\right)^{3/2}$ adalah konstanta, maka $(V)^{2}_{ave} = \left(\frac{4\pi}{2\pi\kappa T}\right)^{3/2} \int_{0}^{\infty} e^{-\frac{1}{2}mv^{2}/\kappa T} V^{4} dv$ Dimisarkan bahwa Att $\left(\frac{m}{2\pi \kappa T}\right)^{3/3}$ addition C₁ dan C₂ addition $\frac{1}{2}m/\kappa T$ Diseksaikon menggunakan persainaan 2.g. Sehingga $(V^2)_{ave} = C_1 \int_{-\infty}^{\infty} v^4 e^{-C_e v^2} dv$ (SIDU)

 $\left(\frac{1}{2C_2^{(4+1)/2}}\int\left(\frac{4+1}{2}\right)\right)$ $\left(\frac{1}{2C_{2}^{5/\epsilon}},\frac{3}{2},\frac{1}{2},\frac{7}{2},\frac{1}{2}\right)$ $= C_1 \cdot \frac{1}{2C_2^{5/2}} \cdot \frac{3\sqrt{\pi}}{4}$ Mensubhtusikan C1 dan C2 ke dalam persamaan, sehingga $\frac{(v)^{2}ave}{-} = \frac{4\pi}{\pi} \left(\frac{m}{\pi \kappa T}\right)^{3/2} \cdot \left(\frac{1}{2} \left(\frac{2\kappa T}{m}\right)^{5/2} \cdot \frac{3\sqrt{\pi}}{4}\right)^{5/2}$ $= \frac{3}{8} \sqrt{\pi} \left(\frac{\Im \kappa T}{m} \right)^{5/2}$ $\frac{1}{4\pi}\sqrt{\pi}\sqrt{\pi}\sqrt{\pi}\left(\frac{2\kappa T}{m}\right)^{3/2}$ -11 - 3 \$ (2KI)5/1 $\frac{1}{4} \sqrt{\frac{2}{m}} \left(\frac{2 \kappa \tilde{l}}{m}\right)^{3/2}$ = <u>3</u> . <u>4</u> . <u>4</u>kī <u>8</u> m (V2)ave = 3KT m pimana Vimis adalah v(v2) ave, sehingga Vrms = $\sqrt{\frac{3\kappa T}{m}}$ 3. Bukhkan Banwa nimus Eave = 3 KT $Jaucolo: fave = \int_{C} F(E) dE$ Dimana $F(E) = 2\pi \left(\frac{1}{\pi \kappa T}\right)^{3/2} e^{-E/\kappa T} E^{1/2}$ Schingga ipersamaan ivenjadi Eave = $\int_{0}^{\infty} E \left[2\pi \left(\frac{1}{\pi \kappa r} \right)^{3/2} e^{-E/\kappa T} E^{1/2} \right] dE$ karena att $\left(\frac{1}{\pi k \tau}\right)^{3/2}$ adaiah konstanta, maka Eave = $2\pi \left(\frac{1}{\pi kT}\right)^{3/2} E^{3/2} e^{-E/kT} dE$ (SIDU)

$$\begin{array}{c} \begin{array}{c} \label{eq:product} & \mbox{Dimitsion bound} \\ 2\pi\left(\frac{1}{\pi\pi}\right)^{3/4} & \mbox{doion } C_1 & \mbox{doion } C_1 \\ & \mbox{tr} \\ \hline \mbox{Dengan reinggunation performan an 2.35, yaitu } \\ & \mbox{fixed} x^n e^{2\pi} e^{4\pi} e^{2\pi} e^{4\pi} e^{4\pi}$$

	a merupakan kombinasi dari ruang spasial dan ruang momentum atau kecepata
Oleh karer berpindah	na atom-atom sistem mikroskopis selalu bergerak dan bergerak itu berarti posisir maka dinamika sistem mikroskopis dapat didiskripsikan dengan baik dan lengka rgerakan atom-atom sistem mikroskopis tersebut dalam
Mengapa pe	nu ada ruong fasa untuk sistem mikroskopik?
	ng fasa adalah kombinasi antara ruang spasial dan ruang momenton. Sistem milikrasik
your	g kita tahu adalah sistem fisis yang berukuran mikro (kecil) dimana sistem ini selalu
	gerak, serta memituki Massa dan juga momentum. Sehingga perulah ruang tasa terse
	tuk menghitung gerak-gerak yang ada pada ruangan atau partikei-paritikei dalam b
) Mengapa :	iemua fungsi olistribusi memluiki bentuk sebagai fungsi eksponensial pangkat negati,
Jawab : Age	ar Kurva distribusi dapai berbentuk seperti Kurva peluruhan radioaktig. Dimana kurva ti
Seb	ut melengkung dan kiri ke konan bawan menunjukkan bahwa zat radiokaktiji semi
	a Semakin menyusut dan berkurang.
	esar fungsi distribusi yang mendiskripsikan sifat dan perilaku alamiah sistem n biasanya merupakan fungsi Gaussian yang memiliki ciri sebagai fungsi
	al berpangkat negatif. Hal ini untuk memberikan batasan terhadap
	an nilai teoritis variabel dinamik dalam fungsi distribusi tersebut berharga
	Misalnya, fungsi distribusi kecepatan dan energi, seandainya kecepatan dan
	arga tak hingga maka secara otomatis fungsi distribusinya berharga nol.
	ta lain, secara fisis tidaklah mungkin menjumpai situasi dimana kecepatan dan Im berharga tak hingga karena hal itu berarti fungsi distribusinya berharga nol.
	nei dietribuei borbarna nol, maka eietom fiele toreobut tidak okele
Apablia Tur	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.
	gsi distribusi berharga nol, maka sistem fisis tersebut tidak eksis.

D.3.2 Assignment 2

• Nama : Ronitak Satsabillah Penurunan persamaan sebaiknya sistematis · NIM : 18030234068

- · Kelas : 2018E
- dan rinci Arti fisis dari persamaan yang diperoleh sebaiknya dijelaskan dengan baik
- Persamaan Sachur - Tetrode

and harden pungsi distribusi etatusur Maxwell - Botteman , partuet dapot dihedarism satu dengan lanniya. Rengan azumsi tesebut, meta probabilitar penyurunan N buah partitel gar pada higkat tungkat enorgi semanulni

$$W = N \prod_{s} \frac{q_s n_s}{n_s !} \qquad (are direction providing Hand) (0)$$

Selab dijerturan probabilitas untur mengetahuni partitel gac olapat olibeztatan olengan garyang lain (parlited listop). Mota dipertutian pertitiungan probabilitas (w) yang telalu besan dari yang seherusnya. Apabila dilanggap satu partitel tislak darak dibebdakan diari partitol lakin, mala jumlah cara menutrar N buah partilel tersebut dapat dibedadatan adalah N! Dangan devotian, jika dhanggap bahwa parteet partirat gas dalam assembli tidat dapal dibedatan mata probabilitas penyusun partikel partikel yang diangkap pada persamaran (1) hawar olibagi N!, sehingga melijadi .

$$W = \prod_{s} \frac{q_s a_s}{a_s!} \qquad \text{candidg them, flow, flow, the } (1)$$

Berdacartan persamaan (2) dilasilijan entropi / etiangi bebas ttelmhotte, sebesan :

teuis dalam teadaan matamum, mata

$$W_{max} = \frac{g_s}{n_s} = e^{-(x_s/g_{Er})} \qquad (4)$$

tattor pengali Lagrange olengan. In Winar menjadi

$$\ln W_{\max} = \sum_{s} \left(n_{s} \ln e^{-i\alpha + \beta e_{s}} + n_{s} \right) \qquad (s)$$

$$\ln W_{Max} = \sum_{s} \left[-\alpha n_s - \beta E_s n_s + n_s \right]$$
 (4)

Bontana $\sum_{i} n_s = N$; $\sum_{i} n_s \epsilon_s = E$; Ae^{ϵ} ; $B = -\frac{1}{M}$ solungya pers. (4) menjadi .

$$\ln W_{A2k} = -N \ln A + \frac{E}{kT} + N$$
(7)

fungsi partisi $z = \frac{N}{A}$, dipercieh nitai la Wmax $\ln W_{max} = N \ln \frac{2}{N} + \frac{6}{kT} + N$ dengan nilai e = BV (21(mkT)^{3/2}. Parameter B datam filngsi partisi menyatahan rapal kedaan dalam ruang pasa, mata dengan menggunatan prinsip tetida≠ pastian $\Delta p_x \Delta x \approx h$ appendich volume pada rulang pasa minimum Heuenberg ATMin = Ape Apy Ape Ar Ay Az 1 Tmin 2 h.h.h ∆ Tmm & h3 29) Parameter 18 mengan.Brung 1 leadaan para mahaimum , maka $B = \frac{1}{\Delta T_{min}} = \frac{1}{h^3} (sudat pandang semi Masik) = -$ (10) Nilai z yang digunatan untuk monurchitan persamatan keadaan termodunamira yaitu . $Z = \frac{V}{h^{9}} (2\pi m \mu T)^{\frac{3}{2}} - \dots - \dots$ (II) Mata energi hotaloga : E = NKT'<u>dln z</u> dT $\xi = N_{LT}^2 \frac{d}{dT} \ln \frac{V}{h^3} (2\pi mk)^{3/2} T^{3/2}$ $E = \frac{Nk}{d\tau} \left(\ln \frac{v}{h^3} \left(2\pi mk \right)^{\frac{3}{2}} + \frac{a}{2} \ln \tau \right)$ $E = NkT^{2} \left(0 + \frac{3}{2} \cdot \frac{1}{T}\right)$ (12) Nilai entroponya : S = k In W max $S = \frac{E}{T} + \frac{NE}{N} \left(\ln \frac{2}{N} + 1 \right)$ $S = (\frac{3}{2} \text{ NeLT}) + Ne (10 \text{ V} (2EMET)^{3/2}) + NE$

$$S = \frac{V}{2} Nk + Nk \left(\ln \frac{V}{Nh^3} (2\pi m kT)^{3/4} \right) + Nk$$

$$S = \frac{5}{2} Nk + Nk \left(\ln \frac{V}{Nh^3} (2\pi m kT)^{3/4} \right)$$

$$S = Nk \left(\frac{5}{2} + \ln \left\{ \frac{V (2\pi m kT)^{4/4}}{Nh^3} \right\} \right)$$
(13)

feixamaan tersebut Ritenal dongen persamaan Sackur - Tetrode yang berlatu untur antropi gas yang malempali volume (v) tersuaun oleh partikel(N) yang tidat berstuutur pada suhu (T):

$$\begin{split} & \text{Valor genis is gas diatomik} \\ & \text{Dretahui bahwa energi meterut gas diatomik sebesar '} \\ & \text{U} \cong \text{Nut}^{4} \left[\frac{a}{2\tau} + \frac{a}{2\tau} \ln \left\{ \frac{1}{2} (a_{1} + 1)e^{-i(1+r)h^{2}/8h^{2} \ln r^{2}} \right\} + \frac{a}{2\tau} \ln \left\{ \frac{e^{-tw/2kT}}{1 - e^{\pi w/kT}} \right\} + \\ & \frac{a}{2\tau} \ln \left\{ g_{0} + g_{1} e^{-\frac{1}{2} (a_{1} + 1)e^{-i(1+r)h^{2}/8h^{2} \ln r^{2}} \right\} + \\ & \frac{a}{2\tau} \ln \left\{ g_{0} + g_{1} e^{-\frac{1}{2} (a_{1} + 1)e^{-i(1+r)h^{2}/8h^{2} \ln r^{2}} \right\} + \\ & \frac{a}{2\tau} \ln \left\{ g_{0} + g_{1} e^{-\frac{1}{2} (a_{1} + 1)e^{-i(1+r)h^{2}/8h^{2} \ln r^{2}} \right\} + \\ & \frac{a}{2\tau} \ln \left\{ g_{0} + g_{1} e^{-\frac{1}{2} \ln r^{2}} \right\} + \\ & \frac{a}{2\tau} \ln \left\{ \frac{a}{2\tau} + \frac{a}{2\tau} \ln \left\{ \sum_{j} (a_{j} + 1)e^{-j(j+r)} e^{j/r} + \frac{1}{2} + \frac{a}{2\tau} \ln \left\{ \frac{e^{-6w}/4\tau}{1 - e^{-6w}/T} \right\} + \\ & \frac{a}{2\tau} \ln \left\{ \frac{g}{2} + \frac{a}{2\tau} \ln \left\{ \sum_{j} (a_{j} + 1)e^{-j(j+r)} e^{j/r} + \frac{1}{2} + \frac{a}{2\tau} \ln \left\{ \frac{e^{-6w}/4\tau}{1 - e^{-6w}/T} \right\} + \\ & \frac{a}{2\tau} \ln \left\{ \frac{g}{2} + \frac{g}{2\tau} \ln \left\{ \sum_{j} (a_{j} + 1)e^{-j(j+r)} e^{j/r} + \frac{1}{2} + \frac{a}{2\tau} \ln \left\{ \frac{e^{-6w}}{1 - e^{-6w}/T} \right\} + \\ & \frac{a}{2\tau} \ln \left\{ \frac{g}{2} + \frac{g}{2\tau} + \frac{g}{2\tau} \ln \left\{ \sum_{j} (a_{j} + 1)e^{-j(j+r)} e^{j/r} + \frac{1}{2} + \frac{a}{2\tau} \ln \left\{ \frac{g}{2} + \frac{g}{2\tau} + \frac{1}{2} + \frac{1}{2}$$

female drope (performer

$$\begin{split} & \text{Kasus } j \rightarrow \text{Dimana } \Theta_{r} \ll T \ll \Theta_{v} \text{ Pada jangtauan int matra } \Theta_{v}/T \rightarrow \infty, \text{ den} \\ & \Theta_{r}/T \rightarrow \infty \\ & \text{Schingga persamaan (z) merijadi} \\ & \text{U} \approx \text{NkT}^{1} \left[\frac{s}{2t} + \frac{2}{3T} \ln \left[\frac{1}{2} (\tilde{s}_{1}+1) e^{-i} (\tilde{s}_{1}+1) e^{-i} (\tilde{s}_{1}+1) \Theta_{r}/T \right] + \frac{2}{3T} \ln \left[\frac{e^{-m}}{1-e^{-m}} \frac{2}{3} + \frac{2}{3T} \ln \left[\frac{1}{3} + \frac{2}{3} e^{-m} \right] \right] \\ & \text{U} = \text{NkT}^{2} \left[\frac{3}{3t} + \frac{2}{3T} \ln \left\{ \frac{1}{2} (\tilde{s}_{1}+1) e^{-i} (\tilde{s}_{1}+1) \Theta_{r}/T \right\} \right] \\ & \text{Schagai pendekatan} \\ & \frac{2}{3} \left[(\tilde{a}_{1}'+1) e^{i} (\tilde{s}_{1}'+1) e^{i} (\tilde{s}_{1}+1) e^{i} (\tilde{s}_{1}+1) \Theta_{r}/T \right] \\ & = 2e^{\Theta_{r}/4T} \int_{0}^{\infty} (\tilde{s}_{1}+1) e^{i} (\tilde{s}_{1}+1)$$

Spran drages Candicareer

Kapasitas kalor dan kalor jenisnya adalah:
•
$$Cv = \frac{dU}{dT} = \frac{d}{dT} \frac{5}{2} nRT = \frac{5}{2} nR$$

• $cv = \frac{Cv}{n} = \frac{5}{2}R$
Kasus $[I] \rightarrow T \gg \Theta_V$ dan $\Theta_C/T \rightarrow \infty$
Sehingga persamaan (2) menjadi
 $U \approx NkT^2 \left[\frac{3}{2T} + \frac{3}{2T} \ln \left\{ e^{\Theta/4T} \frac{T}{\Theta} \right\} + \frac{3}{2T} \ln \left\{ \frac{e^{-\Theta_V/2T}}{1 - e^{-\Theta_V/T}} \right\} \right]$
karena $T \gg \Theta_V$ mata $\Theta_V/T \rightarrow 0$ dan $\Theta_T/T \rightarrow 0$ sohungga
 $U = NkT^2 \left[\frac{3}{2T} + \frac{3}{2T} \ln \left\{ \frac{T}{\Theta} \right\} + \frac{3}{2T} \ln \left\{ \frac{T}{\Theta_V} \right\} \right]$
 $U = NkT^2 \left[\frac{3}{2T} + \frac{3}{2T} \ln \left\{ \frac{T}{\Theta_V} \right\} + \frac{3}{2T} \ln \left\{ \frac{T}{\Theta_V} \right\} \right]$
 $U = NkT^2 \left[\frac{3}{2T} + \frac{3}{2T} \ln \left\{ \frac{T}{\Theta_V} \right\} + \frac{3}{2T} \ln \left\{ \frac{T}{\Theta_V} \right\} \right]$
 $U = NkT^2 \left[\frac{3}{2T} + \frac{1}{T} + \frac{1}{T} \right]$
 $U = \frac{T}{2} NkT \rightarrow U = \frac{T}{2} nRT$

Kapasitas talor dan kalor jenisnya adalah:

÷

)

i

۱

۱

)

)

•
$$Cv = \frac{du}{dT} = \frac{d}{dT} \left(\frac{7}{2}nRT\right) = \frac{7}{2}nR$$

• $cv = \frac{Qv}{n} = \frac{7}{2}R$

Pari hasil tersebut tampak bahwa kapasutas kalon gas mengalami perubahan Fetira suhu diubah dari cangat rendah ke sangat tinggi. Suhu sangat rendah dan sangat kinggi tersebul sangat relatif dan bergantung pada jenis gas.

female dropse (performe

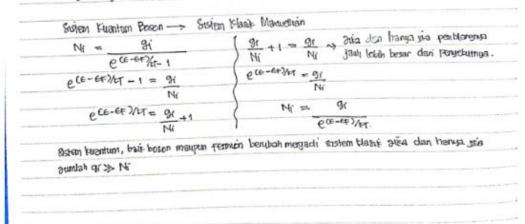
D.3.3 Student Work on Mid Exam

Nama : Qonitah Salsabillah NIM : 1203092.4062 KELAS 1 2018 E Mattud : Fisea Statistic (1). (a). Bentan penjelakan tentang perpedaan pundamental antara distribusi statistik. Maewell - Boltzman 15 Bese - Fanstein, dan Termi - Durac Jauab : Ada a distribusi statistati, distributi klasiji dan distribusi ruannum i Dishibusi statistis Alaxwel - Beltzman (Distribusi blasis). Distribusini ini dyusatan untur mempelajari sutern Fisur solah satunya gar ideal. Car ideal therupatan gas yang pendatu atom-atominya diapat duwakilu oleh persamuan "kendaran PV-Nr.T altau PV = NRT. Distribusi Hasile diguncifian untrue menuruntan rumusan kalon jenis gas ideal $ev = \frac{3}{2}k$ Juga digunatan untuk menurunan tunusan teori ekhertiki dumana settap energi yang dirumustan dengan bentur kuadrat dari vartabel dinamik misulnya v^2 , $Et = Emv^2$; Et - 12122. Ban-x maupun v merupatan besaran dinamiti, Dalam distributis statistik Maxwell Boltzman juga dijulastan peritaku gas untuk fertikel yang dapat dibedakan. Pada gas ideal bizan energi totalnga E = Salicit sedangton energi total pada otom zat podat sebesar E - N(6) = 30RT don talor Jenis 201 padatnya cv = 3K yary tidat bergantung pada temperatur. Populasi Maxwelliannnya sebesar : NI - gi 01- - 64160 Distribusi Statistik Base - Einstein · (Distribusi kuantum) . Distribusi thi manthether mangement initial taker genis cat radet yong bergaratung pada temperatur tadi tentro temperaturnya nendah tilai ar atan menugu nel kanka temperaturnya tinggi nilai Oniya algi, kemboli kehtir sohurasi yalilu ak. Partitel luantumnya memiliri nan nel atau bulat (1,2,3,4,dst). Besen juga tidat menatuhi princip larangan pauli. Populasi Boson dibention pada persamaan 14 = - (a-61/17) Energi totalnya sebesar E = 3N (E) = 3N tiw P. HW/FT -1 contch etspusithinga proton, neutron, nucleon, fonon, foton. · Distribuen' statistic ferror - Dirac (Distribuen' Fuantum). tungai Dustribuai statistik Femi Brac bertaku untuk partitel permuon yang spinnya setengah dan drau teripatannya (之、圣, 圣, dst) contoh eksplisitnya adalah elertron chait electron kondurs, electron valensa, maupun electron yana menempahi posisi dengan keadaan energi tertentu, Fermicin meniatuhui Arméip larangan Poule, Populasi Basen uliberitari pada resmean Ni e (0-6+)/15+1 Sicu

Dahrbusi fermi-Diac menjelastan penomena kenautsi logam dan perbedaan agratruja. Hazannian eremi

$$\epsilon_{\dagger} = \frac{\hbar^2}{\partial m} \left(\frac{\eta_v \mathbb{E}}{L} \right)^z = \frac{\hbar^2}{\partial m} \left(\frac{N \mathbb{E}}{2L} \right)^z$$

(b). Bentur distril: populasi termicio


ferminua

25

Rumus populari ini bermenterat seteli untut menjelastan penomena mengapa gas Boo-Einstein berpentatu sebagai vistem Hushi atau gas elettron / elettron tensuter legam

i v Əlia dan hanya jira pembranghua li Jaun lebh beran dan penyebut.
I Jame could beach when furtherere
$=\frac{9i}{Ni}$
- Si (Populari Marweilian)
e.(e-6+)/4

Pengan demilion prezes diatas merupatan proses berubahnya distribusi statistik Guantum Form-Ditac menjadi fungai distribusi statistik Manueli-Boltaman. Dengan kata Vali proses tersebut merubahnyaikan proses berubahnya aistem kuantum menjadi sustem klasik. Hu beratti, syarat agar eistem kuantum dalam halim autem permiten berubah menjadi sustem klasik (manuelisin) dengan mengasumatan 9 jauh lébih kesar dari N. Dalam bahasa tikaka , g. adalah gumtah keadaan dengan tingkat energi tertentu, N. adalah gumtah partitél -

and the second and the Fungsi Parton' Botteman $Z = \int_{a}^{b_0} Ce e^{-e/tT} de = BV (2\pi m t)^{3/t}$ Episton (energi) yang hobit mungelo berharga nazariti elek tarena itu, batas Integralnya dimular dani nol sampai tat hingga B = Konstanta > V == Volume (= B Az Apz Dy APy De APA Az = tettdatpastian Hevenberg 9=1 St 5 = Bh3 1 $Z = \frac{V}{h^{3}} (a_{\text{LM} k-T})^{\frac{3}{2}} ; \frac{N}{Z} = \frac{Nh^{3}}{V(z_{\text{LM} k-T})^{3} h^{2}} = e^{\alpha} - A$ ternyata ada nunusan Ny yang diarastanitan dengan A, gang menjadi tertera aposah suatu sistem fisis tertentu dapat dikarebontar sebagai eustem Hasnic oltav butan. A sebenderig dengan kenapatan gas N/V, gas ideal adalah gas wang atominya bersauhan. Perapatan hanya dikoluran oleh 2 vartabel N dan V butan eleh cara lagatmana istem-atom berunteration. Schuroga N/V untuli gas ideal rendah, epoloiba ada astem tinis yang Anga tecil atau N/Vinga rendah, maka suten publis the adolah system plass Hasile Manuel Botteman . Distribut = CV = 312 (12 = 2,3 1mol-12-1). ev= 515 (2). 2). 5 ar = + (25) 45 $= 3 \frac{N_A}{k} \frac{h^2 \omega^2}{T^2} \frac{e^{h \omega/FT}}{(e^{h\omega/ET})^2}$ = 3R $\left(\frac{h^{2}w}{kT}\right) \frac{ehwAT}{(e^{hw}/t_{1})^{2}}$ · Felita the > LCT make e hw ALT -1 as e hwith $Cv = 3R \left(\frac{hw}{kr}\right)^2 e^{-hw/kr} \approx 0$ mara depat dutulit · tetria hwe ket make e tow/tet as 1 + tow Persampan menjadi $Cv = 3K \left(1 + \frac{hw}{kT}\right)$ kerena suhu tertampau besar, mera CV 2 SR.

CV 10 310 ev 20 3. 8,314 CU & G, 9 tal/molk my cures 6 tal/molk. 4,2 (0). The lead = 300 K 15 TE AL = 450 K TESU = 900 K. (c). tw_ = Ko TE = 8,62 × 10 " eV / 11 × 300 K= 2,986 × 10 - eV 15 how - KO TO = 8.62 × 10 ° eV /K × 450 K = 3,895 × 10-2 eV Tise = to the = 8.62 × 10" eV/ K × 500 K = 7,758 × 10-2 eV cd). .

female drage tandicener

D.3.4 Student Work on Final Exam

1 Nama , Ronitah Salson Mah NIM 18030224068 Kelas 1 2018 E - UAS -~ fisika Statistik~ (1b) Secara teori Havit untur mementuriam Kalor Jenis logar CV · h (3r) v - cv · 3r Pansangan bahwa elettren pada permutaan logam yang biata dusbut sebagai electron tensura membentan tentributi sekurgga harvs Siperlatungtan. Kalor denis kortributi Bari elattron konsultai = Celentron as 3R Colethon = 0,00 8 3 % Te, CN 32 → hasilnya kecil kanena TF≫T Kaneha T/Tr husilnya kecil, Bapat diarritan bohus Fontribusi Bani Diestron FonBura Fecul tetapi tetap Varus Siperhitungkan ... Farena C Berbanging lunus dengan T, Maka tominibasis electron dican lebilih nyata gina logam (b)T 3 at)+ S Forthbusi Filtrani tonon. Cv = yang bersang tutan Bipanestan. Mengapa? Fontribus' electron tonguts' Pada temperatur rendah kontribusi electron tendurs; den kontribusi vibradi penen relahip tudat signipitan Roda temperatur rensiali pula baile statistik B-E maupon F-D menusur pasa nilai noi. Untut temperatur netergah, kontribusi tesuanya mulai sapat samati. Odangkan kasa temperatur tinis. Kontribasi Foron mensionings' bentribus' electron tensurs. Bagaimana Ditanya: Gas Z . • Juniah tristen = N (2). Diret : . E1 = 0 W)LE> · volume assembli · V · E2 = E (c). C · n. = N - nz · n. . Duralah partifel & Ex . · (1 = 12 £ Fawab : 2. = Z.e - 51/kg ZW; e Niei/ur = e-EI/WT + e-Ez/WT (a). Z = Z. atau gi Cek? 2 = N! fia. <E> = NET d In (e-EV/kr + e EV/kr CD) E = NKT d In Z dt 9201 e-E/M -11- $\langle E \rangle = NkT^2 \frac{d}{dT} \ln (N!)$ -.X. atour

InZ) cv = d (NET d dT dT In Z + NET d2 In Z 2NHT d diz dt $\ln z + T^2 d^2 \ln z$). - Nk (at d dI di In (e Er/LT + E h (e-E1/FT+e-E2/ET) 2 d2 NE (at dT? di (3). Canonical Ensembel -> Ensembel yang asombli-asembliñya memiliki dinding yang tidat dapat ditembur essien telapi dapui ditembar oleh energi. Dalam Gasembel ini jumlah eistem dalam semua assembli sama banyatiya tetapi energinya herbeda. Namun dumlali total ascembli dalam encembelinya Konstan karena haak tenjadi pertukaran partikei (dN=0). Centrols: (1) Air mineral dalam botol yang tertera sinar matahan' (2) Refrigeran Salass mesin pensurgin (3) · Besi yang Bipanastan dari satu uzung, uzung yang lain juga aran panas · Grand Fanonical Excentibel -> Encentibel yang assembli-asemblinga memilipi Builibing yang dapat di tanibus sistem maupun energi sahungga terjaði pertulianan þartitel (dN≠0) dan terjáði patukaran energi (de ≠0). Palam sistem termostinamita suebut sistem terbuta. : (1) Air Constitutioner (AC), terjasi pertutation enersi (talor) terjasi pertutation partitel listed Contoh (2) Kopi Panas yang menjadi dingin (3) - Kulkas , terjasi portutoran enersi san paras Mejasi Sugan Michs Karonital Ensembel w Ensembel yang asemblir asemblinga memuliti Dunding 1973 tidat dapat Altembus sustem maupum Oversi schungen tudat terjadi pertukaran partikel dan tidat terjadi pertukaran energi. Dalan astem temosinamika susebut sustem terisolasi 47 An Balan termos _ menjas. Suhu air tetap Ban Dilapisi Buduz Kolator Conten : (2) Kalorimotor. - memuliki signit yang sawa Sangan bistem termos. (3) Gos Ideal Demi Allah, saya atan mengerjatan UAs dengan bersungguh-sungguh sesuai dengan hasin pemirinan saya pribadi tanpa melatukan tecunangan dalam bentuk apapun RONITAN S.

D.4 VALIDATION TEST

D.4.1 Validation Test of Mid Exam

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3 lt. 1 Surabaya 60231 E physics@unesa.ac.id fisika.fmipa.unesa.ac.id

VALIDATION FORM FOR MID-SEMESTER EXAM

COURSE	:	Statistical Physics		
CLO	:	 Demonstrating independent and honest characters in doing Mid-Exam on Statistical Physics. Understanding theoretical concepts of Statistical Physics in general, and classical statistics distribution (Maxwell-Boltzmann) and quantum statistics distributions (Bose-Einstein and Fermi-Dirac) comprehensively. Being able to formulate procedural problem solving associated with applications of both classical and quantum statistics distributions to some phenomenological microscopic systems. 		
Lecturer	:	Tjipto Prastowo, Ph.D		
Instruction	Choose and tick (v) the appropriate mark in this column for:			

			Category				
No	Aspects		1	2	3		
1	Instruction for solving the problems				 Image: A second s		
2	Suitability of each question with CLO			 Image: A second s			
3	Level balance of easy, medium and difficult qu		× .				
4	Scoring guidelines follow the points of the mar		<				
5	The duration of completing the questions follow		× .				
6	Allows multiple alternative correct answers		No				
7	Each question does not depend on other question		Yes				
8	The questions are communicative and do not ha		~				
9	Tables, pictures, graphics, maps, or the like are legibly (if any)			1			
Mid- for S	ments/Suggestions: exam questions are in line with CLO latistical Physics Course listed.	Validator, h M2 Utama Alan Deta, M.F					
Resp	onses from Lecturer:	Surabaya, 31 October Lecturer, Wastowo Tjipto Prastowo, Ph.D NIP 19670203199502					

www.unesa.ac.id | "Growing with character"

D.4.2 Validation Test of Final Exam

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Kampus Ketintang Jalan Ketintang Gedung C3 lt. 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

VALIDATION SHEET FOR FINAL EXAM

Name of Course	2	Statistical Physics
 CLO: 1. Demonstrating independent and honest characters in doing Mid-Exam on Statistical Physics. 2. Understanding theoretical concepts of Statistical Physics in general, and classical statistics distribution (Maxwell-Boltzmann) and quantum statistics distributions (Bose-Einstein and Fermi-Dirac) comprehensively. 3. Being able to formulate procedural problem solving associated with applications of both classical and quantum statistics distributions to some phenomenological microscopic systems. 		 Sub-CLO: Being able to understand basic principles of Fermi-Dirac Statistics and its applications to conduction electrons on metals. Being able to understand basic principles of Fermi-Dirac Statistics and its applications to the specific heat of metals. Being able to understand basic principles of thermodynamics of gases based on classical and quantum statistics, concepts of entropy fo open and closed systems. Being able to understand basic principles of thermodynamics of gases based on classical and quantum statistics, concepts of entropy and a change in entropy of a system, classical gases, Gibbs paradox, semi-classical gases. Being able to understand basic principles of quantum model of diatomic gases, a combined motion of molecular translation, rotation and vibration, total partition function for diatomic gases. Being able to understand ensemble model for description of microscopic systems, the role of total partition function in formulation of Helmholtz energy to derive the equation of state and total energy of gases with or without the presence of molecular interaction.
Lecturer		Prof. Tjipto Prastowo, Ph.D., Dr. Z.A. Imam Supardi, M.Si., and Utama Alan Deta, M.Si.
Instruction		Give (v) on the column selected: 1. Adequate 2. Good 3. Very Good

www.unesa.ac.id | "Growing with character"

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Kampus Ketintang
Jalan Ketintang Gedun
C3 lt. 1
Surabaya 60231
E: physics@unesa.ac.id
fisika.fmipa.unesa.ac.id

NIP 198903172015041002

Category Aspects No 1 2 3 1 Instruction for solving the problems ~ Suitability of each question with CLO 2 ~ Level balance of easy, medium and difficult questions ~ 3 Scoring guidelines follow the points of the mark 1 4 The duration of completing the questions follows the time available 5 ~ Allows multiple alternative correct answers 6 No 7 Each question does not depend on other questions Yes The questions are communicative and do not have ambiguity √ 8 Tables, pictures, graphics, maps, or the like are presented clearly and ~ 9 legibly (if any) Comments/Suggestions: Final-exam questions are in line with CLO for Statistical Physics Course listed. Surabaya, 4 January 2020 Validator, rastowo Tjipto Prastowo, Ph.D NIP 196702031995021001 Response from Lecturer: Surabaya, 5 January 2020 Lecturer, "the Utama Alan Deta, M.Pd., M.Si

www.unesa.ac.id "Growing with character"

D.5 CLASS ACADEMIC ACHIEVEMENT

PROGRAM STUDI S1 Fisika DAFTAR NILAI MAHASISWA Mata Kuliah : Fisika Statistik Kelas : 2018E Tahun Ajaran : 2020/2021 Gasal

Keterangan :

Komponen nilai yang diisi hanya : Part, Tugas, UTS dan UAS
 Nilai UAS mahasiswa dengan kehadiran dibawah 73.3% (kolom dg warna merah) tidak akan disimpan
 Jangan merubah apapun di dokumen ini kecuali pada point nomer satu di atas.

4. PPTI / BAAK tidak menerima file nilai untuk diupload. Proses upload nilai dilakukan oleh dosen pengampu yang bersangkutan.

No	NIM	Nama Mahasiswa	Angkatan	Kehadiran	Part	Tugas	UTS	UAS	NA	Huruf	Pakai
1	18030224035	SILVI RAHMAWATI WIBOWO	2018	100%	89	80.75	70	80.5	80.175	A-	1
2	18030224036	SILVIE PUSPA ANGGRAINI	2018	100%	85.5	76	70	75	76.4	B+	1
3	18030224037	ILMA AULIA	2018	100%	86.5	79	60	76	75.8	B+	1
4	18030224038	FUNNY QORRY AIN	2018	100%	87	76	60	70.5	73.35	В	1
5	18030224039	MOCHAMMAD ANANG MUSTAGHFIRI	2018	100%	80.5	78.5	50	71.5	71.1	В	1
0	18030224040	SARI DEWI	2018	100%	78.5	67	00	70	68.8	B-	1
7	18030224041	NURUL LATHII FATUL CHAMIDAH	2018	100%	85.5	89	50	77	76.9	B+	1
8	18030224042	SANIA NUR FAIZA	2018	100%	85	84.5	80	75	80.85	A-	1
9	18030224043	LULU NUR MAULIDA	2018	100%	84	78.5	80	75	78.85	B+	1
10	18030224044	AJENG DWI ANTIKA	2018	100%	86	87.5	80	72	81.05	A-	1
11	18030224045	ISNA RAHMAWATI	2018	100%	83.5	77	70	79	77.5	B+	1
12	18030224046	MUSYAROFAH DWI NUR LAILY	2018	100%	86.5	80	60	76.5	78.05	B+	1
13	18030224047	NUR IKA DWI LESTARI	2018	100%	80	80	85	67	80.1	A-	1
14	18030224048	TIA NUR AGUSTIN	2018	100%	86	85.25	50	00	72.575	В	1
15	18030224049	DANIAR KARTIKA	2018	100%	85	86	80	75.5	81.45	A-	1
10	18030224050	KHOIROTIN	2018	100%	80	79.5	85	79.5	81.9	A-	1
17	18030224051	MUHAMMAD ASYROFUL UMAM	2018	100%	68	63.5	50	55	59.15	С	1
18	18030224052	EKA NURUL HIDAYAH	2018	100%	86	81	60	93.5	81.55	A-	1
19	18030224053	FARAH KHALIDAH KHANSA	2018	100%	87	76.5	75	75	77.85	B+	1
20	18030224054	FANHARIS CHUZAINI	2018	100%	85	75.5	50	82	74.25	В	1
21	18030224056	IKA WAHYU KINNASIH	2018	100%	84.5	74.5	60	77.5	74.5	В	1
22	18030224057	ROIFATU DIANA ZAIN	2018	100%	90	80.75	85	76.5	83.975	A-	1
23	18030224058	CANDRA DININGSIH	2018	100%	86.5	80	75	87	82.4	A-	1
24	18030224059	ARSHA BAYU RAHANTI	2018	100%	90	80	85	64.5	80.15	A-	1
25	18030224060	ANGELINA OKTA VIRONIKA	2018	100%	80	83.5	50	70	72.05	В	1
20	18030224061	ANGGRAINI DWI OKTAVIA	2018	100%	84	78.5	75	71.5	76.8	B+	1
27	18030224062	FIRLY MAULIDYA ANGGRAYNI	2018	100%	81.5	81	50	82.5	75.35	B+	1
28	18030224063	YEKTI PURNAMA UTAMI	2018	100%	74	82	60	73	73.3	В	1
29	18030224064	ASEP MUGNI MUAMMAR	2018	100%	86.5	83.5	70	67	76.45	B+	1
30	18030224065	WIN NATASHA KHARISMA	2018	100%	75	75.5	55	71.5	70.1	В	1
31	18030224000	SYAH NANTA MAULANA ISHAK	2018	100%	73	80.5	60	01	69.05	B-	1
32	18030224067	MUSLIMATUL FITRIA	2018	100%	89.5	90.5	85	78.5	85.0	Α	1
33	18030224068	QONITAH SALSABILLAH	2018	100%	88.5	87.5	85	80.5	85.1	A	1
34	18030224069	HIKMATUL MAULIDAH	2018	100%	85	87.5	50	00	73.05	В	1

Original data :

п

D.6 ASSESSMENT OF PLO-CLO AND CLASS PERFORMANCE

ASSESSMENT OF PROGRAM LEARNING OUTCOMES (PLO)

 COURSE
 : Statistical Physics

 CREDIT
 : 3

 STUDY PROGRAM
 : Undergraduate Programme of Physics

 PERIOD
 : 2020/2021 (Odd Semester)

 CLASS
 : 2018E

 PARTICIPANTS
 : 34

PROGRAM LEARNING OUTCOMES:

PLO 1. Able to demonstrate knowledge of Classical Physics and Modern Physics.

PLO 2. Able to formulate a physical systems as physical model by using mathematics.

PLO 6. Able to improve their knowledge and be able to continue their study in a higher education.

PLO 9. Able to work as an individual as well as a team effectively, have entrepreneurship skill and awareness of environmental issues.

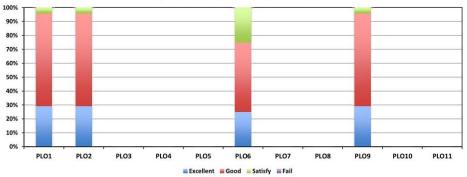
COURSE LEARNING OUTCOMES:

1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams.

2. Understanding theoretical concepts of Statistical Physics in general and Classical Statistics (Maxwell-Boltzmann distribution) and Quantum Statistics (Bose-Einstein and Fermi-Dirac distributions) comprehensively.

3. Being able to formulate problem solving for procedural problems relevant to the applications of both Classical and Quantum Statistics to some statistical phenomena found in microscopic systems.

CLO-PLO CORRELATION:


	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11				
CLO1	~	1	0	0	0	1	0	0	1	0	0				
CLO2	~	~	0	0	0	~	0	0	~	0	0				
CLO3	~	~	0	0	0	1	0	0	1	0	0				

ASSESSMENT PLAN:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11
CLO1	Participation, Assignment, Mid Exam, Final Exam		0	0	0	Participation, Assignment, Mid Exam, Final Exam	0	0	Participation, Assignment, Mid Exam, Final Exam	0	0
CLO2	Participation, Assignment, Mid Exam, Final Exam		0	0	0	Participation, Assignment, Mid Exam, Final Exam	0	0	Participation, Assignment, Mid Exam, Final Exam	0	0
CLO3	Participation, Assignment, Mid Exam, Final Exam	Participation, Assignment, Mid Exam, Final Exam	0	0	0	Participation, Assignment, Mid Exam, Final Exam	0	0	Participation, Assignment, Mid Exam, Final Exam	0	0

STUDENTS' PERFORMANCE:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11
Excellent	29%	29%	#DIV/0!	#DIV/0!	#DIV/0!	25%	#DIV/0!	#DIV/0!	29%	#DIV/0!	#DIV/0!
Good	67%	67%	#DIV/0!	#DIV/0!	#DIV/0!	50%	#DIV/0!	#DIV/0!	67%	#DIV/0!	#DIV/0!
Satisfy	4%	4%	#DIV/0!	#DIV/0!	#DIV/0!	25%	#DIV/0!	#DIV/0!	4%	#DIV/0!	#DIV/0!
Fail	0%	0%	#DIV/0!	#DIV/0!	#DIV/0!	0%	#DIV/0!	#DIV/0!	0%	#DIV/0!	#DIV/0!

GRAPHICAL CLASS OR STUDENTS PERFORMANCE