PORTFOLIO FOR NUCLEAR PHYSICS COURSE

SEMESTER 7 ACADEMIC YEAR 2020-2021

Course Coordinator: Prof. Tjipto Prastowo, Ph.D

Teaching Team: Prof. Dr. Wasis, M.Si Mita Anggaryani, Ph.D Lydia Rohmawati, S.Si., M.Si

PHYSICS DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES THE STATE UNIVERSITY OF SURABAYA 2021

TABLE OF CONTENT

Cover Page	1
TABLE OF CONTENT	2
A. SEMESTER LEARNING ACTIVITY PLAN	3
A.1 COURSE IDENTITY	3
A.2 COURSE TOPICS	4
A.3 COURSE PROGRAM	5
A.4 MAPPING OF LEARNING OUTCOME-COURSE OUTCOME	15
A.4.1 Program Learning Outcome (PLO) of UPP	15
A.4.2 Program Educational Objective (PEO) of UPP	16
A.4.3 Mapping of PLO-PEO	16
B. COURSE ASSESSMENT	17
B.1 ASSESSMENT RUBRICS	17
B.2 ASSESSMENT SYSTEM	18
B.3 WEIGHT DISTRIBUTION OF ASSESSMENT	18
B.4 STUDENT GRADE SYSTEM	18
C. COURSE DEVELOPMENT	19
C.1 A BRIEF REPORT FOR CLASS RESULTS	19
C.2 ANALYSIS OF CLASS PROBLEMS	19
C.3 STRATEGY FOR ALTERNATIF SOLUTIONS	19
D. APPENDICES	20
D.1 DOCUMENTS OF CLASS ACTIVITIES	20
D.1.1 Weekly Journal	20
D.1.2 Student Attendance	23
D.2 DOCUMENTS OF EXAMS	24
D.2.1 Mid Exam	24
D.2.2 Final Exam	26
D.3 SAMPLES OF STUDENT PERFORMANCE	27
D.3.1 Short Article (Assignment 1)	27
D.3.2 Thematic Poster (Assignment 2)	29
D.3.3 Student Work on Mid Exam	30
D.3.4 Student Work on Final Exam	32
D.4 VALIDATION TEST	33
D.4.1 Validation Test of Mid Exam	33
D.4.2 Validation Test of Final Exam	34
D.5 CLASS ACADEMIC ACHIEVEMENT	36

A. SEMESTER LEARNING ACTIVITY PLAN

A.1 COURSE IDENTITY

Module Name	Nuclear Physics
Module Level	Bachelor Degree
Course Code	N/A
Subheading	N/A
Course contained	N/A
Semester/Year	7/4
Module Coordinator	Prof. Tjipto Prastowo, Ph.D
Lecturers	1. Prof. Tjipto Prastowo, Ph.D
	2. Prof. Dr. Wasis, M.Si
	3. Mita Anggaryani, Ph.D
	4. Lydia Rohmawati, S.Si., M.Si
Language	Bahasa Indonesia
Course Classification	Compulsory
Teaching format/	A weekly meeting in class for 3 'hours' of teaching
The number of hours per	(1 'hour' of teaching = 50 minutes)
week during semester	
Course Load	1 Course Unit = 3 workhours per week or 170 minutes
	per week with various activities as follows:
	Class Activity: 50 minutes
	Structured Learning: 60 minutes
	 Independent Learning: 60 minutes
	3 Course Units = 9 workhours per week = 510 minutes
	per week
Course Credit	per week 3 Course Units
Course Credit Pre-requisites	per week 3 Course Units Quantum Physics, Statistical Physics
Course Credit Pre-requisites Course Learning Outcome	per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest
Course Credit Pre-requisites Course Learning Outcome	per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final
Course Credit Pre-requisites Course Learning Outcome	per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams.
Course Credit Pre-requisites Course Learning Outcome	per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management.
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management. 3. Understanding different perspectives of a nuclear
Course Credit Pre-requisites Course Learning Outcome	per week3 Course UnitsQuantum Physics, Statistical Physics1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams.2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management.3. Understanding different perspectives of a nuclear power plant and the search for alternative energy
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management. 3. Understanding different perspectives of a nuclear power plant and the search for alternative energy based on nuclear reaction.
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management. 3. Understanding different perspectives of a nuclear power plant and the search for alternative energy based on nuclear reaction. 4. Understanding poster creation with relevant themes of
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management. 3. Understanding different perspectives of a nuclear power plant and the search for alternative energy based on nuclear reaction. 4. Understanding poster creation with relevant themes of radioisotope decay for various applications in human
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management. 3. Understanding different perspectives of a nuclear power plant and the search for alternative energy based on nuclear reaction. 4. Understanding poster creation with relevant themes of radioisotope decay for various applications in human life.
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management. 3. Understanding different perspectives of a nuclear power plant and the search for alternative energy based on nuclear reaction. 4. Understanding poster creation with relevant themes of radioisotope decay for various applications in human life. Nuclear Physics examines the discovery of the nucleus of
Course Credit Pre-requisites Course Learning Outcome	 per week 3 Course Units Quantum Physics, Statistical Physics 1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management. 3. Understanding different perspectives of a nuclear power plant and the search for alternative energy based on nuclear reaction. 4. Understanding poster creation with relevant themes of radioisotope decay for various applications in human life. Nuclear Physics examines the discovery of the nucleus of an atom, nuclear properties in general, nuclear stability
Course Credit Pre-requisites Course Learning Outcome	per week3 Course UnitsQuantum Physics, Statistical Physics1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams.2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management.3. Understanding different perspectives of a nuclear power plant and the search for alternative energy based on nuclear reaction.4. Understanding poster creation with relevant themes of radioisotope decay for various applications in human life.Nuclear Physics examines the discovery of the nucleus of an atom, nuclear properties in general, nuclear stability and binding energy per nucleon, deutron as the simplest
Course Credit Pre-requisites Course Learning Outcome Course Content	per week3 Course UnitsQuantum Physics, Statistical Physics1. Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams.2. Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and energy, and its corresponding nuclear waste management.3. Understanding different perspectives of a nuclear power plant and the search for alternative energy based on nuclear reaction.4. Understanding poster creation with relevant themes of radioisotope decay for various applications in human life.Nuclear Physics examines the discovery of the nucleus of an atom, nuclear properties in general, nuclear stability and binding energy per nucleon, deutron as the simplest nucleus, energy levels of nucleus, nuclear models,

	calculation for nuclear reaction, building bloks of matter,
	families of elementary particles, fundamental conservation
	laws in nuclear reaction, the existence of meson, nuclear
	fission and fusion, alternative green energy based on
	hydrogen fusion, nuclear technology, a nuclear power plant
	and its corresponding nuclear waste management, and
	radioactive decay for various applications in human life.
Attributed soft skill	1. Oral communication skills in individual presentation
	2. Collaborative work in a group of students
References and sources	1. Prastowo, T. 2015. Lecture Notes on Nuclear Physics.
	Unpublished work.
	2. Abdullah, K. M. S. 2014. Fundamentals of Nuclear
	Physics. Kurdistan Region, Iraq: University of Duhok
	Publication.
	3. Bortz, A. B. 2007. <i>Physics: decade by decade</i> . New York,
	US: Facts on File Inc.
	4. Serway, R. A., Moses, C. J., and Moyer, C. A. 2005.
	Modern Physics. Belmont, US: Thomson Brooks/Cole.
	5. Beiser, A. 2003. Concepts of Modern Physics. New York,
	US: McGraw-Hill Companies
	6. Some power point files and/or course materials
	relevant to Nuclear Physics from the internet.

A.2 COURSE TOPICS

Class discussions involve the following learning materials:

- 1. The history of nuclear discovery: nuclear discovery, terminologies and measurements of atomic scales, classicification of a nuclide, fundamental interaction.
- 2. Nuclear properties: static and dynamic properties, nuclear stability, proton-neutron configuration for stable nuclei.
- 3. Differences between atom and nucleus: atomic structure versus nuclear structure, hydrogen and deutron, energy levels in atoms and nuclei, spin and parity for nucleus.
- 4. Nuclear models: Fermi model, liquid-drop model, shell model, magic numbers, nuclear valence.
- 5. Radioactive decay: radioactive decay, mechanisms of radioactive decay, charge conservation, Q-value calculation, alpha decay, beta decay, electron capture, gamma decay.
- 6. Building blocks of matter: classification of elementary particles, quarks and leptons, bosons and fermions, hadrons and leptons, particle and anti-particle, standard model, fundamental conservation laws in nuclear reaction.
- 7. The discovery of meson: Yukawa hypothesis, pion properties, positive, negaitve, and neutral pions, nuclear reaction that involves pions.
- 8. Nuclear reaction: nuclear fission and fusion, a nuclear power plant and its corresponding nuclear waste management, alternative energy based on nuclear reaction, radioactive decay for various applications in human life.
- 9. Posters and video clips presentation on nuclear technology and its potential use for various benefits to human life.

A.3 COURSE PROGRAM

THE STATE UNIVERSITY OF SURABAYA FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICS STUDY PROGRAM

Document

Code

			SSON PLAN						
NAME OF COURSE			COURSE CODE	DISCIPL	INE	COURSE UN	IIT	SEMESTER	DATE CREATED
NUCLEAR PHYSICS				PHYSICS	5	T= 3 units	P=?	7 (seven)	2 August 2020
AUTHORISATION			AUTHOR		COURSE COORDINATO	R		HEAD OF PHYS	ICS STUDY
PHYSICS DEPARTMENT								PROGRAM	
			Prof. Tjipto Prastowo, Ph.	D	Prof. Dr. Wasis, M.Si			Prof. Dr. Munasir, M.Si	
Learning Achievement	Program Lea	arning Outco	me (PLO)]				
	PLO1	Students a	re able to demonstrate kno	wledge of	f Classical Physics and Mo	odern Physics	5.		
	PLO6	Students a	re able to improve their kno	owledge a	nd continue their study i	in a higher ec	lucation.		
	PLO7	Students a	re able to communicate the	eir ideas a	nd/or research results th	rough acade	mic writi	ng and speaking o	effectively.
	PLO9	Students a	re able to work as an indivi	dual as we	ell as a team effectively,	have entrepr	eneurshi	p skill and awarei	ness of
		environme	ental issues						
	PLO10	Students a	re able to demonstrate goo	od scientis	t's manners, critical thinl	king and inno	vation sk	cills in research ar	nd professional
		fields, and	willing to do lifelong learning	illing to do lifelong learning					
	Course Lear	ning Outcom	ie (CLO)						
	CLO-1	Demonstra	ating independent, creative	and hone	st characters in doing stu	udent assignr	nents, m	id and final exam	IS.
	CLO-2	Understan	ding structured concepts of	f the nucle	eus of an atom in many a	spects from t	the histor	ry of nuclear disc	overy to possible
		application	ns of nuclear technology and	d energy,	and its corresponding nu	iclear waste r	managen	nent.	
	CLO-3	Understan	ding different perspectives	of a nucle	ar power plant and the s	earch for alt	ernative	energy based on	nuclear reaction.
	CLO-4	Understan	ding poster creation with re	elevant th	emes of radioisotope de	cay for variou	is applica	itions in human li	ife.
	Final compe	etence in eac	h step of learning (Sub-CLO)					
	Sub-CLO1	Being able	to understand the history of	of nuclear	discovery in the context	of modern p	hysics, cl	assification of a r	uclide based on
		a specific r	number of protons and neut	trons, and	the dominant interactio	n within the	nucleus.		
	Sub-CLO2	Being able	to understand nuclear prop	perties in	general, the nature of nu	cleus based	on its pro	oton-neutron con	figuration that leads
		to stable a	nd unstable nuclei, nuclear	character	istics based on binding e	nergy per nu	cleon, an	d concepts and r	neasurement

		techniques of isotope determination.
	Sub-CLO3	Being able to understand differences between hydrogen and deutron, energy levels of nucleus, nuclear interaction involved, and
		nuclear characteristics based on its corresponding spin and parity.
	Sub-CLO4	Being able to understand nuclear models and the roles of nuclear valence in controlling nuclear properties.
	Sub-CLO5	Being able to understand concepts of stable nuclei and radioactive nuclei, mechanisms of radioactive decay and its corresponding
		fundamental principles of electric charge and mass-energy conservation.
	Sub-CLO6	Being able to understand concepts of elementary particles, classification of elementary particles, 'everything is made in pairs',
		and fundamental conservation laws.
	Sub-CLO7	Being able to understand the discovery of meson as a carrier between nucleons, types of meson, and nuclear reaction that involves meson, meson resonance.
	Sub-CLO8	Being able to understand differences between nuclear fission and fusion, potential sources of alternative green energy based on
		hydrogen fusion, radioactive decay for various applications in human life, nuclear technology, and a nuclear power plant and
		its corresponding nuclear waste management.
	Sub-CLO9	Being able to understand some issues associated with nuclear technology and its potential use for various benefits to human life
		through poster creation by a group of students and individual poster presentation.
Course Description	Nuclear Phys	sics examines the discovery of the nucleus of an atom, nuclear properties in general, nuclear stability and binding energy per
	nucleon, deu	itron as the simplest nucleus, energy levels of nucleus, nuclear models, radioactive decay, mechanisms of nuclear decay, Q-value
	calculation for	or nuclear reaction, building bloks of matter, families of elementary particles, fundamental conservation laws in nuclear reaction,
	the existence	e of meson, nuclear fission and fusion, alternative green energy based on hydrogen fusion, nuclear technology, a nuclear power
	plant and its	corresponding nuclear waste management, and radioactive decay for various applications in human life.
Topic Discussions:	1. The histor	y of nuclear discovery: nuclear discovery, terminologies and measurements of atomic scales, classicification of a nuclide,
Learning Materials	fundamental	Interaction.
	2. Nuclear pr	operties: static and dynamic properties, nuclear stability, proton-neutron configuration for stable nuclei.
	3. Difference	s between atom and nucleus: atomic structure versus nuclear structure, hydrogen and deutron, energy levels in atoms and nuclei,
	spin and pari	ity for nucleus.
	4. Nuclear m	odels: Fermi model, liquid-drop model, shell model, magic numbers, nuclear valence.
	5. Radioactiv	e decay: radioactive decay, mechanisms of radioactive decay, charge conservation, Q-value calculation, alpha decay, beta decay,
	electron cap	ture, gamma decay
	6. Building bi	locks of matter: classification of elementary particles, quarks and leptons, bosons and fermions, nadrons and leptons, particle and
	7 The discou	standard model, fundamental conservation laws in nuclear reaction.
	8 Nuclear ro	action: nuclear fission and fusion, a nuclear nower plant and its corresponding nuclear waste management, alternative energy
	based on pur	clear reaction, radioactive decay for various applications in human life
	9 Posters an	id video clins presentation on nuclear technology and its notential use for various benefits to human life
	J. FUSICIS all	a video cips presentation on nuclear technology and its potential use for various benefits to numain life.

Refere	nces	Primary:							
1. Prastowo, T. 2015. Le				lotes on Nuclear Physics.	Unpublished work.				
		2. Abdullah,	K. M. S. 2014. Fun	damentals of Nuclear Phy	vsics. Kurdistan Region, Ira	q: University of Duhok Pu	blication.		
		3. Bortz, A. E	z, A. B. 2007. <i>Physics: decade by decade</i> . New York, US: Facts on File Inc.						
		4. Serway, R	. A., Moses, C. J., a	nd Moyer, C. A. 2005. <i>M</i>	odern Physics. Belmont, US	: Thomson Brooks/Cole.			
		5. Beiser, A.	2003. Concepts of	Modern Physics. New Yo	anies				
		Secondary:							
		Some power	point files and/or	course materials relevant	to Nuclear Physics from the time to the test of test o	ne internet			
Lecture	ers	Prof. Tjipto P	rastowo, Ph.D, Pro	f. Dr. Wasis, M.Si., Mita A	Anggaryani, Ph.D., Lydia Ro	hmawati, S.Si., M.Si.			
Pre-rec	luisites	Quantum Phy	ysics, Statistical Ph	ysics					
Week	Week Final competence in each		As	sessment	Learning Methods, II (Time All	Format, nstruction, ocation)	Learning Materials	Proportion (%)	
		()	Indicator	Criteria & Format	Luring (offline)	Daring (online)			
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	
1	Being able to un	derstand	Students can		. ,	Contextual Learning	Nuclear discovery		
	the history of nu	ıclear	explain the			Class discussion	• Terminologies and		
	discovery in the	context of	history of			Q & A	measurements of		
	modern physics,		nuclear				atomic scales		
	classification of	a nuclide	discovery in the				Mass-energy		
	based on a spec	ific number	context of				equivalence		
	of protons and r	neutrons,	modern physics,				Classicification of		
	and the dominal	nt	classification of				a nuclide		
	interaction with	in the	a nuclide based				Fundamental		
	nucleus		on a specific				interaction		
			number of				• Gravity		
			neutrons and				Weak interaction		
			the dominant				• Electromagnetic		
			interaction				interaction		
			within the				Strong interaction		
			nucleus						

2	Being able to understand	Students can		Contextual Learning	Nuclear properties
-	nuclear properties in	explain nuclear		Class discussion	Nuclear properties
	general the nature of	nronerties in			Nuclear radius
	nucleus based on its proton-	general the		Qui	 Nuclear density
	neutron configuration that	nature of			 Nuclear mass
	leads to stable and unstable	nucleus based			 Stable nuclei
	nuclei nuclear	on its proton-			 Unstable nuclei
	characteristics based on	neutron			 Nuclear stability
	binding energy per nucleon.	configuration			 Binding energy
	and concepts and	that leads to			Proton and
	measurement techniques of	stable and			neutron separation
	isotope determination	unstable nuclei.			energies
		nuclear			Mass spectroscope
		characteristics			
		based on			
		binding energy			
		per nucleon,			
		and concepts			
		and			
		measurement			
		techniques of			
		isotope			
		determination			
3	Being able to understand	Students can	Description on	Contextual Learning	 Nuclear properties
	nuclear properties in	explain nuclear	student assignments:	Class discussion	 Nuclear radius
	general, the nature of	properties in	1. Short article (by	Q & A	 Nuclear density
	nucleus based on its proton-	general, the	a group) describing		Nuclear mass
	neutron configuration that	nature of	the use of		
	leads to stable and unstable	nucleus based	radioactive decay		
	nuclei, nuclear	on its proton-	and/or nuclear		Unstable nuclei
	characteristics based on	neutron	technology for		Nuclear stability
	binding energy per nucleon,	configuration	various applications		 Binding energy
	and concepts and	that leads to	in human life		 Proton and
	measurement techniques of	stable and	2. Corresponding		neutron separation

	isotope determination	unstable nuclei,	poster (by a group)		energies	
	•	nuclear	3. Individual poster		 Mass spectroscope 	
		characteristics	presentation			
		based on	F			
		binding energy				
		per nucleon.				
		and concepts				
		and				
		measurement				
		techniques of				
		isotope				
		determination				
4	Being able to understand	Students can		Contextual Learning	• Hydrogen, the	
-	differences between	explain		Class discussion	simplest atom	
	hydrogen and deutron.	differences		0 & A	• Deutron the	
	energy levels of nucleus.	between			simplest nucleus	
	nuclear interaction involved.	hydrogen and			• Energy levels of an	
	and nuclear characteristics	deutron, energy			atom	
	based on its corresponding	levels of				
	spin and parity	nucleus, nuclear				
		interaction			• Nuclear force	
		involved, and			Nuclear force Dinding operations	
		nuclear			Binding energy of a doutron	
		characteristics			a deutron	
		based on its			• Spin and parity of	
		corresponding			aueutron	
		spin and parity				
5	Being able to understand	Students can		Contextual Learning	Nuclear models	
	nuclear models and the	explain nuclear		Class discussion	• Fermi model	
	roles of nuclear valence in	models and the		Q & A	• Liquid-drop model	
	controlling nuclear	roles of nuclear			• Shell model	
	properties	valence in			Magic numbers	
		controlling			Nuclear valence	
		nuclear				

		properties				
6	Being able to understand	Students can		Contextual Learning	Radioactive decay	
	concepts of stable nuclei	explain		Class discussion	 Mechanisms of 	
	and radioactive nuclei,	concepts of		Q & A	radioactive decay	
	mechanisms of radioactive	stable nuclei			 Charge 	
	decay and its corresponding	and radioactive			conservation	
	fundamental principles of	nuclei,			• Q-value	
	electric charge and mass-	mechanisms of			calculation	
	energy conservation	radioactive			 Alpha decay 	
		decay and its			 Beta decay 	
		corresponding			 Electron capture 	
		fundamental			 Gamma decay 	
		principles of				
		electric charge				
		and mass-				
		energy				
		conservation				
7	Being able to understand	Students can	Student assignment	Contextual Learning	 Radioactive decay 	15%
	concepts of stable nuclei	explain	1 (short article):	Class discussion	 Mechanisms of 	
	and radioactive nuclei,	concepts of	handed in	Q & A	radioactive decay	
	mechanisms of radioactive	stable nuclei			 Charge 	
	decay and its corresponding	and radioactive	Criteria for		conservation	
	fundamental principles of	nuclei,	assessment are		• Q-value	
	electric charge and mass-	mechanisms of	available		calculation	
	energy conservation	radioactive			 Alpha decay 	
		decay and its			 Beta decay 	
		corresponding			 Electron capture 	
		fundamental			 Gamma decay 	
		principles of				
		electric charge				
		and mass-				
		energy				
		conservation				
8	Mid Semester Exam					30%

9	Being able to understand	Students can		Contextual Learning	Building bloks of	
-	concepts of elementary	explain		Class discussion	matter	
	narticles classification of	concents of			Classification of	
	elementary particles.	elementary			elementary	
	'everything is made in pairs'	particles.			narticles	
	and fundamental	classification of			Ouarks and	
	conservation laws	elementary			leptons	
		particles.			Bosons and	
		'everything is			fermions	
		made in pairs'.			Hadrons and	
		and			leptons	
		fundamental			Particle and anti-	
		conservation			particle	
		laws			Standard model	
					 Fundamental 	
					conservation laws	
					in nuclear reaction	
10	Being able to understand	Students can	Student assignment	Contextual Learning	 Building bloks of 	15%
	concepts of elementary	explain	2 (relevant posters):	Class discussion	matter	
	particles, classification of	concepts of	handed in	Q & A	 Classification of 	
	elementary particles,	elementary			elementary	
	'everything is made in pairs',	particles,	Criteria for		particles	
	and fundamental	classification of	assessment are		 Quarks and 	
	conservation laws	elementary	available		leptons	
		particles,			 Bosons and 	
		'everything is			fermions	
		made in pairs',			 Hadrons and 	
		and			leptons	
		fundamental			 Particle and anti- 	
		conservation			particle	
		laws			 Standard model 	
					 Fundamental 	
					conservation laws	
					in nuclear reaction	

11	Being able to understand the discovery of meson as a carrier between nucleons, types of meson, and nuclear reaction that involves meson, meson resonance	Students can explain the discovery of meson as a carrier between nucleons, types of meson, and nuclear reaction that involves meson, meson resonance		Contextual Learning Class discussion Q & A	 The discovery of meson Yukawa hypothesis Pion properties Positive, negative and neutral pions Nuclear reaction that involves pions Meson resonance 	
12	Being able to understand differences between nuclear fission and fusion, potential sources of alternative green energy based on hydrogen fusion, radioactive decay for various applications in human life, nuclear technology, and a nuclear power plant and its corresponding nuclear waste management	Students can explain differences between nuclear fission and fusion, potential sources of alternative green energy based on hydrogen fusion, radioactive decay for various applications in human life, nuclear technology, and a nuclear power plant and its		Contextual Learning Class discussion Q & A	 Nuclear fission and fusion A nuclear power plant and its corresponding nuclear waste management Alternative energy based on nuclear reaction Radioactive decay for various applications in human life 	

		corresponding				
		nuclear waste				
		management				
13	Being able to understand	Students can		Contextual Learning	 Nuclear fission and 	
	differences between nuclear	explain		Class discussion	fusion	
	fission and fusion, potential	differences		Q & A	• A nuclear power	
	sources of alternative green	between			plant and its	
	energy based on hydrogen	nuclear fission			corresponding	
	fusion, radioactive decay for	and fusion,			nuclear waste	
	various applications in	potential			management	
	human life, nuclear	sources of			 Alternative energy 	
	technology, and a nuclear	alternative			based on nuclear	
	power plant and	green energy			reaction	
	its corresponding nuclear	based on				
	waste management	hydrogen			• Radioactive decay	
	<u> </u>	fusion,				
		radioactive			applications in	
		decay for			numan life	
		various				
		applications in				
		human life				
		nuclear				
		technology and				
		a nuclear nower				
		a nuclear power				
		ite				
		its corresponding				
		nuclear waste				
		management				
14	Doing oble to understand	Studente con	Student assignment	Dester Presentation	Dector Procentation	
14		procent postore	2 (rolovant olino):	for Drojoct Docod	on Nuclear Division	
	some issues associated with	present posters	5 (relevant clips):	Loorning	(with students have a	
	nuclear technology and its	describing	nanded in	Learning	(with students being	
	potential use for various	some issues		Discussion	active for class	
	benefits to human life	associated with	Criteria for	Q & A	presentation)	

	through poster creation by a	nuclear	assessment are			
	group of students and	technology and	available			
	individual poster	its potential use				
	presentation	for various				
		benefits to				
		human life				
		through poster				
		creation by a				
		group of				
		students and				
		individual				
		poster				
		presentation				
15	Being able to understand	Students can	Student assignment	Poster Presentation	Poster Presentation	
	some issues associated with	present posters	3 (relevant clips):	for Project-Based	on Nuclear Physics	
	nuclear technology and its	describing some	handed in	Learning	(with students being	
	potential use for various	issues		Discussion	active for class	
	benefits to human life	associated with	Criteria for	Q & A	presentation)	
	through poster creation by a	nuclear	assessment are			
	group of students and	technology and	available			
	individual poster	its potential use				
	presentation	for various				
		benefits to				
		human life				
		through poster				
		creation by a				
		group of				
		students and				
		individual				
		poster				
		presentation				
16	Final Exam					40%

A.4 MAPPING OF LEARNING OUTCOME-COURSE OUTCOME

Competency of SSC-ASIIN	Component	Code	Programme Learning Outcome (PLO)
Specific	Knowledge	KNO-1	Able to demonstrate knowledge of Classical
competences		(PLO1)	Physics and Modern Physics
		KNO-2	Able to formulate a physical systems as physical
		(PLO2)	model by using mathematics
		KNO-3	Able to solve problems in physical systems
		(PLO3)	comprehensively by using mathematics and computational tools
	Skill	SKI-1	Able to analyze a physical system by applying
		(PLO4)	mathematics and computational tools/ICT
		SKI-2	Able to design and conduct experiments in
		(PLO5)	learning physics by applying the scientific methods
		SKI-3	Able to improve their knowledge and be able to
		(PLO6)	continue their study in a higher education
		SKI-4	Able to communicate their ideas and/or research
		(PLO7)	results in academic writing and speaking effectively
Social and	Social	SOC-1	Able to make a decision based on the data and
attitude		(PLO8)	information in order to fulfil and evaluate their
competences		500.3	task responsibility
		SUC-2	effectively have entrepreneurshin skill and
		(PLO9)	awareness of environmental issues
	Attitude	ATT-1	Able to demonstrate good scientist's manners ,
		(PLO10)	critical thinking and innovation skills in research
			and professional fields; and willing to do lifelong
		ATT 2	learning
			Able to demonstrate the appreciation of
		(PLOTT)	well as conducting their tasks professionally

A.4.1 Program Learning Outcome (PLO) of UPP

A.4.2 Program Educational Objective (PEO) of UPP

- 1. Produce Bachelor of Physics who are able to use physics knowledge and methodology to solve problems in their work field.
- 2. Produce Bachelor of Physics who have a strong commitment to developing knowledge, whether by studying in a higher-level degree working in a formal institution and entrepreneurs.
- 3. Produce Bachelor of Physics who master the scientific method to observe, analyze and understand physical phenomena, and produce scientific work and contribute according to their expertise.
- 4. Produce Bachelor of Physics who masteries physics that is able to apply their knowledge, expertise in various fields of work, and develop themselves in their career environment.
- 5. Produce Bachelor of Physics who can communicate orally and/ in writing effectively, creatively, innovatively, and collaboratively, as well as working in teams.

	Objectives					
Outcomes	Produce Bachelor of Physics who are able to use physics knowledge and methodology to solve problems in their work field.	Produce Bachelor of Physics who have a strong commitment to developing knowledge, whether by studying in a higher-level degree working in a formal institution and entrepreneurs.	Produce Bachelor of Physics who master the scientific method to observe, analyze and understand physical phenomena, and produce scientific work and contribute according to their expertise.	Produce Bachelor of Physics who masteries physics that is able to apply their knowledge, expertise in various fields of work, and develop themselves in their career environment.	Produce Bachelor of Physics who can communicate orally and/ in writing effectively, creatively, innovatively, and collaboratively, as well as working in teams.	
PLO-1	S	S	S	S	S	
PLO-2	S	S	S	S	S	
PLO-3	S	S	S	S	S	
PLO-4	S	S	S	S	S	
PLO-5	S	М	S	М	S	
PLO-6	S	М	S	S	М	
PLO-7	S	S	S	М	S	
PLO-8	S	Μ	S	М	S	
PLO-9	S	М	S	М	S	
PLO-10	М	М	М	М	S	
PLO-11	M	М	Μ	S	S	

A.4.3 Mapping of PLO-PEO

Notes:

S = Strong, M = Moderate, L = Low

B. COURSE ASSESSMENT

B.1 ASSESSMENT RUBRICS

Notice that evaluation of student performances is taken from three student assignments, including a short article (assignment 1), a thematic poster (assignment 2), and an individual presentation (assignment 3), mid and final exams. These student assignments are assessed using the separate rubric for each.

The following rubric is used for assessing student assignment 1.

No	Aspects of Assessment		Scoring Scale			
			2	3	4	
1	Formatted text					
2	Originality					
3	Writing ideas					
4	Sources					
5	Alternative solution					
Presentation Grade						

The following rubric is used for assessing student assignment 2.

No	Aspects of Assessment		Scoring Scale			
			2	3	4	
1	Poster design					
2	Placement of photos or pictures					
3	Poster content					
4	Relevance					
5	Importance					
Presentation Grade						

The following rubric is used for assessing student assignment 3.

Course	:	Name of Student	:
Course Unit	:	Study Group	:

No	Aspects of Assessment	Scoring Scale				
			2	3	4	
1	Attitude					
2	Continuity					

3	Content		
4	Time Management		
5	Responsive Talk		
Presentation Grade			

Scoring Scale:

1 = inadequate	3 = good
2 = adequate	4 = very good

Presentation Grade = Total score obtained for each student × 5

B.2 ASSESSMENT SYSTEM

Final grade for each student is obtained from each component of assessment below,

Assignments 1 and 2	: 30%
Mid Exam	: 30%
Final Exam (Assignment 3)	: 40%

B.3 WEIGHT DISTRIBUTION OF ASSESSMENT

Component	CLO-1	CLO-2	CLO-3	CLO-4	TOTAL
Assignments 1 and 2	25	25	25	25	100
Mid Exam	50	50	-	-	100
Final Exam	25	25	25	25	100

Notice that all numerical data in the above table are given in per cent.

B.4 STUDENT GRADE SYSTEM

Final grade for each student is classified below according to a total score obtained,

Excellent	: if a total score is greater than or equal to 80
Good	: if a total score is greater than or equal to 70
Satisfactory	: if a total score is greater than or equal to 55
Failed	: if a total score is less than 55

Grade	Interval									
А	85 ≤ A <100									
A-	80 ≤ A- < 85									
B+	75 ≤ B+ < 80									
В	70 ≤ B < 75									
В-	65 ≤ B- < 70									
C+	60 ≤ C+ < 65									
С	55 ≤ C < 60									
D	40 ≤ D < 55									
E	0 ≤ E < 40									

C. COURSE DEVELOPMENT

C.1 A BRIEF REPORT FOR CLASS RESULTS

The following table reports student academic achievement during the course.

Parameter	Ν	N in per cent
The number of students taking the subject	36	100
The number of students who has passed the course during a normal time	36	100
The number of students who has passed the course by a remedial treatment	-	-
The number of students who has failed the course after taking a remedial treatment	-	-

C.2 ANALYSIS OF CLASS PROBLEMS

Class achievement is recorded very successful with all the student scored greater than 80, classified as excellent. The final scores were only distributed to grades A and A- (both are classified as excellent academic achievement).

C.3 STRATEGY FOR ALTERNATIF SOLUTIONS

N/A. All the students have passed the course with excellent grades.

D. APPENDICES

D.1 DOCUMENTS OF CLASS ACTIVITIES

D.1.1 Weekly Journal

7/18/2021

SIAKADU: Cetak Jurnal Perkuliahan

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA Kampus Ketintang Jalan Ketintang, Surabaya 60231 T: +6231-8293484 F: +6231-8293484 Jaman: unesa.ac.id email : bakpk@unesa.ac.id

Aktivitas Perkuliahan

Nama	Matakuliah : Fisika In	nti	Dosen :	TJIPTO PF	RASTOWO (196	702031995021001)
Kelas	: 2017D					
Jadwa	l & Ruang : C03.03.0	02 (14.40 - 17.10)	R.			
No.	Tanggal	Pertemuan	Topik	Peserta	Status	Dosen
1	18-09-2020	Pertemuan ke 1	 Penjelasan RPS Fisika Inti Penjelasan sistem evaluasi dan asesmen Fisika Inti Overview on Nuclear Physics Terminologies on Nuclides Hypothetical electron 	36	Terjadwal	Tjipto Prastowo
2	25-09-2020	Pertemuan ke 2	 Sifat-sifat inti Jejari inti, densitas inti Massa inti Inti stabil dan Inti tak stabil Pita kestabilan inti Energi ikat inti 	36	Terjadwal	Tjipto Prastowo
3	3 02-10-2020 Pertemuan ke 3		 Sifat-sifat inti Jejari inti, densitas inti Massa inti Inti stabil dan Inti tak stabil Pita kestabilan inti Energi ikat inti Energi pelepasan nukleon Spektroskopi massa isotop 	36	Terjadwal	Tjipto Prastowo
4	4 09-10-2020 Pertemuan ke 4		 Perbandingan antara hidrogen dan detron Perbandingan antara tingkat energi atom dan tingkat energi inti Gaya inti Enegi ikat detron Spin dan paritas detron 	36	Terjadwal	Tjipto Prastowo
5	16-10-2020	Pertemuan	1. Spin dan paritas	36	Terjadwal	Tjipto Prastowo

https://siakadu.unesa.ac.id/5f8ce14b-ef1c-38f4-b36f-cf87c988e1a2.aspx?id=2763e450-c622-32f5-86e4-3822623940e6&cetak_jurnal=1

1/3

7/18/2021	18/2021 SIAKADU: Cetak Jurnal Perkuliahan							
		ke 5	inti 2. Pita kestabilan inti 3. Interaksi antar nukleon 4. Sumur Fermi nukleon 5. Konfigurasi proton- netron penentu kestabilan inti					
6	23-10-2020	Pertemuan ke 6	 Mekanisme peluruhan radioaktif Prinsip kekekalan muatan dan kekekalan nomer massa Peluruhan alfa, beta, gamma Emisi beta positif dan tangkapan elektron Reaksi inti, Q-value Energi kinetik minimum pada reaksi endoterm 	36	Terjadwal	Tjipto Prastowo		
7	30-10-2020	Pertemuan ke 7	 Building blocks of matter Klasifikasi partikel elementer Kuark dan Lepton Boson, Hadron, Fermion Partikel dan Anti- Partikel Persiapan UTS 	36	Terjadwal	Tjipto Prastowo		
8	06-11-2020	Pertemuan ke 8	UTS	36	Terjadwal	Tjipto Prastowo		
9	13-11-2020	Pertemuan ke 9	 Review soal UTS Building blocks of matter Klasifikasi partikel elementer Kuark dan Lepton Boson, Hadron, Fermion Partikel dan Anti- Partikel 	36	Terjadwal	Tjipto Prastowo		
10	20-11-2020	Pertemuan ke 10	 Building blocks of matter Klasifikasi partikel elementer Kuark dan Lepton Boson, Hadron, Fermion Partikel dan Anti- Partikel 	36	Terjadwal	Tjipto Prastowo		
11	27-11-2020	Pertemuan ke 11	1. Kuark dan Lepton	36	Terjadwal	Tjipto Prastowo		

2/3

7/18/2021	/18/2021 SIAKADU: Cetak Jurnal Perkuliahan								
			 Boson, Hadron, Fermion Partikel dan Anti- Partikel Hukum Kekekalan Fundamental Fisika Meson 						
12	04-12-2020	Pertemuan ke 12	 Standard Model Struktur Kuark dan Lepton Bilangan Baryon dan Lepton Conservation Laws 	36	Terjadwal	Tjipto Prastowo			
13	11-12-2020	Pertemuan ke 13	 Penemuan meson Jenis meson Karakteristik pion Reaksi inti yang melibatkan pion Teknologi dan energi nuklir Pro dan kontra 	36	Terjadwal	Tjipto Prastowo			
14	18-12-2020	Pertemuan ke 14	 Belajar mandiri pembuatan poster tematik Fisika Inti (kelompok) Belajar mandiri persiapan presentasi poster Fisika Inti (individual) 	36	Terjadwal	Tjipto Prastowo			
15	25-12-2020	Pertemuan ke 15	Hari Libur Natal 2020	36	Terjadwal	Tjipto Prastowo			

D.1.2 Student Attendance

7/18/2021

SIAKAD : Absen

UNIVERSITAS NEGERI SURABAYA

Jl. Lidah Wetan, Surabaya - 60213 Telepon :+6231-99424932 Faksimile :+6231-99424932 e-mail :bakpk@unesa.ac.id

PRESENSI KULIAH Periode 2020/2021 Gasal

Mata Kuliah	: Fisika Inti
Kelas	: 2017D
Prodi	: S1 Fisika

: Prof. Tjipto Prastowo, Ph.D. Dosen

			Pertemuan Ke															
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
No	NIM	Nama Mahasiswa	18	25	02	09	16	23	30	06	13	20	27	04	11	18	25	%
			Sep	Sep	Oct	Oct	Oct	Oct	Oct	Nov	Nov	Nov	Nov	Dec	Dec	Dec	Dec	
			20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
1.	16030224009	AQBEL QASHMAL BILHAQ	н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	100 %
2.	17030224001	NOVITA DWI RAHAYU	н	н	Н	Н	н	Н	Н	Н	н	Н	Н	н	н	Н	Н	100 %
3.	17030224002	DHINI FARIDATUL NISA	н	н	н	Н	н	Н	Н	Н	н	Н	Н	н	н	н	н	100 %
4.	17030224003	RETNO FITRI WULANDARI	н	н	Н	н	Н	Н	Н	Н	Н	Н	Н	н	Н	н	Н	100 %
5.	17030224004	FAHIRA NADIVA ERNANDI	н	н	н	Н	н	Н	н	Н	н	Н	н	н	н	н	н	100 %
6.	17030224005	ANTONY MAHENDRA	н	н	н	н	н	Н	н	Н	Н	Н	н	н	н	н	н	100 %
7.	17030224006	TETI APRILIANI	н	н	н	Н	н	Н	н	н	н	н	н	н	н	н	н	100 %
8.	17030224007	IQOMATUS SA'DIYAH	н	н	н	н	н	н	н	н	Н	Н	н	н	н	н	н	100 %
9.	17030224008	KHOLLI VATUL NUR ISTIQOMAH	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	100 %
10.	17030224009	WIDYA RAHMAWATI	н	н	н	Н	н	Н	н	н	н	Н	н	н	н	н	н	100 %
11.	17030224010	GANDHIS PUTRI AYUDIA	н	н	н	н	н	Н	Н	н	Н	Н	н	н	н	н	н	100 %
12.	17030224011	ANGELA ARIN PRATAMA	н	н	н	н	н	н	Н	н	н	Н	н	н	н	н	н	100 %
13.	17030224012	HILDA RISANTI	н	н	н	Н	н	Н	Н	н	н	Н	н	н	н	н	н	100 %
14.	17030224013	MOCH. ROMADLON ABDULLOH	н	н	н	н	н	н	н	н	Н	Н	н	н	н	н	н	100 %
		AKBAR																
15.	17030224014	NUR HIDAYATI	н	н	н	н	н	Н	н	н	н	Н	н	н	н	н	н	100 %
16.	17030224015	FRISKA DWI KUSUMA WARDANI	н	н	н	н	н	Н	н	Н	Н	Н	н	н	н	н	н	100 %
17.	17030224016	SRI MAULIDIYAH MANGKUASIH	н	н	Н	Н	Н	Н	Н	н	н	Н	Н	н	н	н	н	100 %
18.	17030224018	ANDRIAN DWI SAPUTRO	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н	н	Н	н	100 %
19.	17030224019	IANATUL HUSNIA	Н	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	Н	н	Н	н	100 %
20.	17030224020	VIVIA MAULIDA ALFIANTI	н	Н	н	Н	н	Н	Н	Н	Н	Н	Н	Н	н	н	Н	100 %
21.	17030224021	NURIL FATHURIN	н	н	н	Н	н	Н	Н	Н	н	Н	Н	н	н	н	Н	100 %
22.	17030224022	FIRDA RULIFIANGGA	н	н	н	Н	н	Н	Н	н	н	Н	Н	н	н	н	Н	100 %
23.	17030224023	LAILATUL IZZA	н	н	н	Н	н	Н	Н	н	н	Н	Н	н	н	н	н	100 %
24.	17030224024	MOH. AHSANIT TAQWIM	н	н	н	Н	Н	Н	Н	н	Н	Н	Н	н	н	н	Н	100 %
25.	17030224025	IVO NURKHOLIFAH	н	н	н	Н	Н	Н	Н	н	н	Н	н	Н	н	н	Н	100 %
26.	17030224026	SITA NURRACHMAN YURIKA	н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н	н	Н	н	100 %
27.	17030224027	DIPTYA LATIFA ROHADI	н	н	н	н	н	Н	Н	Н	н	Н	н	н	н	н	н	100 %
28.	17030224028	BRILLIYAN HADID SETIAWAN PUTRA	н	н	Н	Н	н	Н	Н	Н	Н	Н	Н	н	н	н	н	100 %
29.	17030224029	ELGA NILAWATI	н	н	Н	Н	н	Н	Н	Н	н	Н	Н	н	н	н	н	100 %
30.	17030224030	AFANDY KADAROSMAN	н	Н	н	Н	н	Н	Н	Н	н	Н	Н	н	н	н	Н	100 %
31.	17030224031	KHARISMA FITROTUL UMMAH	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	100 %
32.	17030224032	ARYOGHI CAHYO NUGROHO	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	100 %
33.	17030224033	DEVI SAPUTRI	Н	Н	н	н	н	Н	Н	н	Н	Н	Н	н	Н	Н	Н	100 %
34.	17030224035	DAFFA MAHENDRA	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	100 %
35.	17030224036	WINEKE ANGESTI	Н	Н	Н	н	н	н	н	н	Н	Н	Н	н	н	Н	Н	100 %
36.	17030224037	ERLIN ANDAYANI DEWI	Н	н	Н	Н	н	Н	Н	Н	Н	Н	Н	н	Н	Н	Н	100 %
	Tanda	Tangan Dosen / Asisten																

D.2 DOCUMENTS OF EXAMS

D.2.1 Mid Exam

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3 Lantai 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fimipa.unesa.ac.id

MID-SEMESTER EXAM SEMESTER ODD YEAR 2020/2021

: Nuclear Physics
: Tjipto Prastowo, Ph.D
: S-1 Physics / 2017D
: Friday, 6 November 2020
: 100 minutes / 3.00 – 4.40 pm
: Open-Book

HINTS: Please write carefully your answers to the following questions using all possible sources of study (your notes on weekly discussion on course materials, Lecture Notes on Nuclear Physics, relevant files, internet).

1. 30 point.

Consider two following radioactive decay processes:

and

 $Ra^{223} \longrightarrow Pb^{209} + C^{14}$

 $Ra^{223} \longrightarrow Rn^{219} + He^4$

Given that $m(\text{Ra}^{223}) = 223.018501$ amu, $m(\text{Pb}^{209}) = 208.981065$ amu, $m(\text{Rn}^{219}) = 229.010082$ amu, $m(\text{C}^{14}) = 14.003242$ amu, $m(\text{He}^4) = 4.002603$ amu, then determine Q value for each process and comments on your findings. (CLO 1, 2)

2. 30 point.

See the stability-band curve for stable nuclei below. Why do stable nuclei having relatively large mass numbers A and atomic numbers Z greater than 20 (nuclides with Z > 20) require more neutrons than protons in order to be stable ? (CLO 1, 2)

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3 Lantai 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

3. 40 point.

Given that masses of neutral atoms of C-14 and N-14 respectively are 14.003242 amu and 14.003074 amu where 1 amu = 1.67×10^{-27} kg, determine the energy release (in MeV) during spontaneous β emission in a decay reaction from an unstable nuclide C-14 to a stable nuclide N-14. (CLO 1, 2).

D.2.2 Final Exam

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3 lt. Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

FINAL EXAM SEMESTER 1 ACADEMIC YEAR 2020/2021

COURSE	: Nuclear Physics
STUDY PROGRAM / STUDY GROUP	: Physics / 2017D
LECTURER	: Prof. Tjipto Prastowo, Ph.D
DAY AND DATE	: Tuesday, 5 January 2021
DURATION / TIME	: 100 minutes / 11.00 – 12.40 am
EXAM TASK	: Individual Presentation

HINT: Make a video clip on your individual presentation for final exam on Nuclear Physics Course. You may then better do it with use of any relevant source from weekly course notes, Lecture Notes on Nuclear Physics, and the internet.

NOTES:

- 1. Send your video clips to tjiptoprastowo@unesa.ac.id or WA: 081231537072
- 2. Create a short video clip of about 5 minutes long for individual presentation.
- 3. You may create either separate files of a video clip for each student in the same group or a combined file for a group of students with the same topic of presentation.
- 4. Focus your presentation on key points of a theme poster created by the group.
- 5. Evaluation and assessment of your presentation is justified using the following table:

ASSESSMENT OF INDIVIDUAL PRESENTATION

Cours	ie :	Name of Student	:								
Cours	e Unit :	Study Group	:								
No	Aspect	Aspects of Assessment		Scoring Scale							
	F		1	2	3	4					
1	Attitude										
2	Continuity										
3	Content										
4	Time Management										
5	Responsive Talk										
	Presenta	ntion Grade									

Scoring Scale:

1 = inadequate	3 = good
2 = adequate	4 = very good

Presentation Grade = Total score obtained for each student × 5

D.3 SAMPLES OF STUDENT PERFORMANCE

D.3.1 Short Article (Assignment 1)

Kelompok 1 :Hilda Risanti(17030224012)Moh Ahsanit Taqwim(17030224024)Brilliyan Hadid Setiawan Putra(17030224028)Daffa Mahendra(17030224035)

Positron Emision Tomography (PET) Scan

Positron Emision Tomography (PET) Scan adalah prosedur pengambilan citra fisiologi tubuh yang menggunakan radioisotop pemancar positron dengan hasil yang menggambarkan kelainan fungsi atau metabolisme tubuh. Berbagai kelainan metabolisme di dalam tubuh, termasuk di dalamnya adalah adanya metabolisme sel kanker, gangguan jantung, dan otak, dapat dideteksi melalui PET Scan. Misalnya pada sel kanker, sel kanker mengonsumsi glukosa dalam jumlah yang lebih besar dari pada sel di sekelilingnya. Secara umum, tingkat konsumsi glukosa sel kanker sebanding dengan kecepatan pertumbuhan sel kanker yang mencerminkan tingkat keganasannya. Bentuk metabolisme glukosa di dalam tubuh ini dapat dideteksi menggunakan bahan radiofarmaka.

Perangkat PET secara garis besar dibagi menjadi tiga bagian, yaitu bagian produksi radioisotop, bagian sintesa bahan radiofarmaka, dan bagian kamera PET. Penggunaan PET Scan diawali dengan proses produksi radioisotop fluor-18 (¹⁸F). Partikel bermuatan berupa proton ditembakkan dari *cyclotron* ke dalam inti oksigen-18 (¹⁸O) dan terbentuklah fluor-18 sambil melepaskan sebuah neutron.

$${}^{18}_{8}O + {}^{1}_{1}p \rightarrow {}^{18}_{9}F + {}^{1}_{0}n$$

Radioisotop fluor-18 yang telah didapatkan digunakan untuk mensintesa FDG (2-fluoro-2-deoxy-D-glucose) sehingga terbentuk ¹⁸F-FDG. FDG dipilih karena FDG memiliki unsur yang menyerupai glukosa sehingga dapat digunakan untuk melacak sel kanker. Cairan FDG tidak bisa bekerja sendiri. Oleh karena itu, disintesa dengan fluor-18 sehingga dapat bekerja optimal.

Setelah ¹⁸F-FDG selesai disiapkan, radiofarmaka tersebut disuntikkan ke tubuh dan kemudian tubuh pasien dimasukkan ke dalam rangkaian detektor elektronik. Radiofarmaka tersebut akan diserap oleh sel kanker. Setelah itu, fluor-18 yang terdapat pada ¹⁸F-FDG akan mengalami peluruhan dengan memancarkan positron. Selanjutnya, positron tersebut bertabrakan dengan elektron dalam jaringan tubuh dan terjadilah anihilasi. Anihilasi adalah proses yang terjadi ketika partikel subatomik bertabrakan dengan antipartikelnya untuk menghasilkan partikel lain. Dari anihilasi ini dihasilkan sepasang foton sinar gamma yang terdeteksi oleh detektor sinar gamma. Adanya dua buah foton yang dilepaskan secara bersamaan ini memungkinkan dilakukannya *coincidence detection*.

Pada *coincidence detection*, sinyal yang ditangkap oleh detektor akan diolah jika dua buah sinyal diperoleh secara bersamaan. Jika hanya satu buah sinyal yang ditangkap, maka sinyal tersebut dianggap sebagai pengotor. Seluruh sinyal pengotor akan dieliminasi. Sinyal-sinyal yang ditangkap oleh detektor akan masuk ke bagian *processing unit* untuk dikirim ke *image processing*. Kemudian dilakukan *image reconstruction* untuk mendapatkan gambaran sebaran ¹⁸F-FDG di dalam tubuh. Perangkat kamera PET biasanya telah dilengkapi dengan program untuk keperluan ini sehingga hasil *image reconstruction* dapat diperoleh dengan mudah. Kamera PET memiliki kejernihan citra yang lebih baik dibandingkan dengan kamera gamma yang secara umum digunakan pada kedokteran nuklir. Hal ini dikarenakan pendeteksiannya didasarkan pada *coincidence detection*. Dari hasil ini, akan terlihat tingginya konsentrasi FDG pada bagian tertentu yang menunjukkan keberadaan sel kanker. FDG yang tersisa di dalam tubuh pasien akan keluar dari tubuh melalui urin.

Kelebihan dari PET Scan ini adalah PET Scan dapat mendeteksi kelainan fungsi atau metabolisme tubuh pada tingkat sel. Kemampuan PET Scan dalam mendeteksi akan semakin akurat jika digabungkan dengan *Computed Tomography* (CT) Scan karena citra yang dihasilkan tidak hanya menggambarkan fisiologi tubuh, tetapi juga anatomi tubuh sehingga detail yang dihasilkan lebih tinggi. PET Scan juga memiliki kekurangan, diantaranya adalah kemungkinan terjadinya reaksi alergi radiofarmaka, menghasilkan *low radiation exposure* yang masih belum diketahui efek jangka panjangnya, dan dapat menghambat perkembangan janin pada ibu hamil. Can you make your article shorter ?

No	Aspects of Assessment	Scoring Scale						
		1	2	3	4			
1	Formatted text			>				
2	Originality				✓			
3	Writing ideas				✓			
4	Sources				✓			
5	Alternative solution			~				
Prese	Presentation Grade			0				

The following rubric is used for assessing student assignment 1.

Scoring Scale:

1 = inadequate	3 = good
2 = adequate	4 = very good

Presentation Grade = Total score obtained for each student × 5

D.3.2 Thematic Poster (Assignment 2)

The following rubric is used for assessing student assignment 2.

No	Aspects of Assessment		Scoring Scale				
•		1	2	3	4		
1	Poster design				>		
2	Placement of photos or pictures	✓			✓		
3	Poster content	✓			✓		
4	Relevance				✓		
5	Importance	✓ ✓					
Presentation Grade 95		5					

Scoring Scale:

1 = inadequate	3 = good
2 = adequate	4 = very good

Presentation Grade = Total score obtained for each student × 5

N	UIS No.
and the second se	IM : 19030229012 princa Inti
	551
0 0	-2:2:3
y Ka	$\rightarrow Pb + C$
5 m	$(Ka^{-1}) = 223, 618501$ amu
m	$(Pb^{-1}) = 208, 981065 \text{ dmu}$
	$(C^{-}) = 14,003242$ amu
0 =	$= (m(Ra^{223}) - [m(Pb^{209}) + mCc^{14})])xc^{2}$
	= (-223, 018501 - [-208, 981065 + 19,003292]) anu × p- 931, 5 MeV ()
	= (223,018501 - 222,984307) × 931,5 MeV
	= 0,034194 x 931, 5 MeV
	> 31,851711 MeV sudah besar mau lulus sarjana mosok nulis Q value
	sampai sebanyak itu desimalnya, cukup 31, 85 MeV
h	2232194
Ka	\rightarrow Rn + He
m	$(R_{\rm R}^{-10}) = 219,010082$ amu
m	(He') = 4,002603 amu
10 2	$(m (R_0^{223}) - [m(R_0^{219}) + m(c^{14})]) \times c^{2}$
Q 2	$(m (Ra^{223}) - [m(Rn^{219}) + m(C^{19})] \times C^{2}$ $(223, 018501 - [-219, 010082 + 4, 002603])$ and $\times C^{2} = \frac{931.5}{amt^{2}} \frac{MeV/p^{2}}{amt^{2}}$
Q 2	$(m (Ra^{223}) - [m(Rn^{219}) + m(C^{14})]) \times C^{2}$ $(223, 018501 - [219, 010082 + 4, 002603]) and \times C^{2} \frac{931, 5 MeV/c^{2}}{amcs^{2}}= (223, 018501 - 223, 012685) \times 931, 5 MeV$
0 2	$(m (Ra^{223}) - [m(Rn^{219}) + m(C^{14})]) \times C^{2}$ $(223, 018501 - [-219, 010082 + 4, 002603])antu \times C^{2} \frac{931, 5 MeV/p^{2}}{antu}$ $= (223, 018501 - 223, 012685) \times 931, 5 MeV$ $= 0,005816 \times 931, 5 MeV$
= = = = = = = = = = = = = = = = = = =	$(m (Ra^{223}) - [m(Rn^{219}) + m(C^{14})]) \times C^{2}$ $(223, 018501 - [219, 010082 + 4, 002603])$ galux x^{2} $\frac{931, 5 MeV/x^{2}}{amcr}$ $= (223, 018501 - 223, 012685) \times 931, 5 MeV$ $= 0,005816 \times 931, 5 MeV$ = 5, 417604 MeV
Q 2 = = = = = = = =	$ (m (Ra^{223}) - [n(Rn^{219}) + m(C^{14})]) \times C^{2} $ $ (223,018501 - [219,010082 + 4,002603]) and x x^{2} \frac{931,5 MeV/x^{2}}{amtx^{2}} $ $ (223,018501 - 223,012685) \times 931,5 MeV $ $ 0,005816 \times 931,5 MeV $ $ 5,417604 MeV $
Q = = = = Fomenta	$(m (Ra^{223}) - [n(Rn^{219}) + m(C^{14})]) \times C^{2}$ $(223, 018501 - [219, 010082 + 4, 002603])$ galux e^{2} $\frac{931,5}{amod}$ MeV/ e^{2} $= (223, 018501 - 223, 012685) \times 931,5$ MeV $0,005816 \times 931,5$ MeV = 5, 417604 MeV
Q = = = = Fomenta Ke c ke dua	$(m (Ra^{223}) - [n(Rn^{219}) + m(C^{14})]) \times C^{2}$ $(223, 018501 - [219, 010082 + 4, 002603]) and x e^{2} \frac{931, 5 MeV/e^{2}}{amti}$ $= (223, 018501 - 223, 012685) \times 931, 5 MeV$ $= 0,005816 \times 931, 5 MeV$ = 5, 419604 MeV = 5, 419604 MeV = 5, 419604 MeV = 1000000000000000000000000000000000000
Q = = = Fomenta Fe a kedua bahwa	$ (m (Ra^{223}) - [n(Rn^{219}) + m(C14)]) \times C^{2} $ $ (223,018501 - [219,010082 + 4,002603]) and \times C^{2} \frac{931,5}{amti} \frac{MeV/c^{2}}{amti} $ $ (223,018501 - 223,012685) \times 931,5 MeV $ $ 0,005816 \times 931,5 MeV $ $ 5,417604 MeV $ $ 5,417604 MeV $ $ reakh di atas menunjukkan nilai Q pohitik Artinya $ $ reakh fersebut melepas energi sehingga dapat disimpulkan $ $ reakh fersebut menunjuk nerve sehingga dapat disimpulkan $
Q = = = = Fomenta Fe a fedua bahwa dilepas	$(m (Ra^{223}) - [n(Rn^{219}) + m(C^{14})]) \times C^{2}$ $(223,018501 - [219,010082 + 4,002603])$ galux x^{2} $\frac{931,5}{amc}$ MeV/ x^{2} $= (223,018501 - 223,012683) \times 931,5$ MeV $= 0,005816 \times 931,5$ MeV = 5,417604 MeV = 5,417604 MeV = 5,417604 MeV = 5,417604 MeV = 1000000000000000000000000000000000000
Q = = = fomenta ke a ke dua bahwa dilepas lepas	$(m (Ra^{223}) - [n(Rn^{219}) + m(C^{14})]) \times C^{2}$ $(223, 018501 - [219, 010082 + 4, 002603]) and \times C^{2} \frac{931, 5 \text{ MeV}/c^{2}}{amod}= (223, 018501 - 223, 012685) \times 931, 5 \text{ MeV}= 0,005816 \times 931, 5 \text{ MeV}= 5, 419604 MeV= 5, 419604 MeV= 5, 419604 MeV= 1000000000000000000000000000000000000$

Scanned by CamScanner

No. Date Cestafilan Suam inti atom ditentutan Jumlah perbandingan oleh neutron (N) day Jumlah proton (2) * Unfulc N12 = 1 Tilca N=Z atau inti ringan (2520) stabil + Unput N12= 1,6 atau NYZ Tika inti berat (2)20) stabil Inti berat yong stabil memburuhkan jumlah banyak lebih neutron relatif lcorena dibutuhkan dibandingkan dengan Mmlah proton lebih banyak neutron untuk mengatasi antar interaksi coulomb tersebut proton - proton proton berupa gaya tolak menolak agar tetap tidak keluar dari alcan inti sehingga inti tersebut Stabil. grafik pita kestabilan inti terlihat bahwa inti-inti Dan tolale membentuk kurva kestabilan (N=Z). Inti-inti yang stabil metalaukan peluruhan untuk menuju cestabilan inti. stubil akan m (C") = 19,003242 Sma (3.) Massa atom m (N19) = 19,003099 sma 30 diketahui dalam soal 0 $C_6^{14} \rightarrow N_7^{14} + p^{-1}$ 0 $Q = (m(C^{H}) - m(N^{H})) \times dengan menggunakan data massa inti$ 931,5 MeV /22 (14,003242 - 14,003074) SATA X 22 SAA = 0,000168 × 931,5 MeV = 0,156492 MeV (jumlah massa sebelah kiri - jumlah massa sebelah kanan) x faktor konversi massa beta negatif harus muncul secara eksplisit pada perurumusan Q value

Scanned by CamScanner

D.3.4 Student Work on Final Exam

In this stage, students were required to create a video clip containing a short talk on the basis of their own thematic poster for Individual Presentation (Assignment 3). The following picture was taken from a clip made by one of the students, explaining about PET Scan.

The following rubric is used for assessing student assignment 3.

Course	:	Name of Student	:
Course Unit	:	Study Group	:

No	Aspects of Assessment		Scoring Scale				
		1	2	3	4		
1	Attitude				>		
2	Continuity				~		
3	Content	· · · · · · · · · · · · · · · · · · ·			~		
4	Time Management			✓			
5	Responsive Talk	✓					
	Presentation Grade			0			

Scoring Scale:

1 = inadequate	3 = good
2 = adequate	4 = very good

Presentation Grade = Total score obtained for each student × 5

D.4 VALIDATION TEST

D.4.1 Validation Test of Mid Exam

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN FISIKA Kampus Ketintang Jalan Ketintang Gedung C3 lt. 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

VALIDATION FORM FOR MID-SEMESTER EXAM

COURSE	:	Juclear Physics		
		1. Demonstrating independent and honest characters in doing Mid-Exam on Nuclear Physics.		
CLO : 2. Under proper applic corres		 Understanding the basic concepts of nucleus in various perspectives from the discovery of elementary particles constituting nucleus, properties of nuclei, radioactive decays of unstable nuclei to applications of nuclear technology in human lives and its corresponding nuclear waste management. 		
Lecturer	:	Tjipto Prastowo, Ph.D		
Instruction : Choose and tick (✓) the appropriate mark in this column for: 1. Adequate 2. Good 3. Excellent		Choose and tick (\checkmark) the appropriate mark in this column for: 1. Adequate 2. Good 3. Excellent		

			Category		
No	Aspects				3
1	Instruction for solving the problems				~
2	Suitability of each question with CLO		~		
3	Level balance of easy, medium and difficult que	stions		~	
4	Scoring guidelines follow the points of the mark			~	
5	The duration of completing the questions follow	s the time available		~	
6	Allows multiple alternative correct answers			No	
7	Each question does not depend on other question	18		Yes	
8	The questions are communicative and do not have	ve ambiguity		~	
9	Tables, pictures, graphics, maps, or the like are presented clearly and legibly (if any)			~	
Comments/Suggestions: Mid-exam questions are in line with CLO for Nuclear Physics Course listed. Lydia Rohmawati, S.S NIP 19840511200912			2020 i., M.S 2003	i	
Respon	nses from Lecturer:	Surabaya, 30 October Lecturer, Tjipto Prastowo, Ph.D NIP 19670203199502	2020		

D.4.2 Validation Test of Final Exam

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Kampus Ketintang Jalan Ketintang Gedung C3 lt. 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

VALIDATION SHEET FOR FINAL EXAM

Name of Course		Nuclear Physics	
CLO:	:	Sub-CLO:	
 Demonstrating independent, creative and honest characters in doing student assignments, mid and final exams. 		1. Being able to understand the history of nuclear discovery in the context of modern physics, classification of a nuclide based on a specific number of protocol pour table and the	
 Understanding structured concepts of the nucleus of an atom in many aspects from the history of nuclear discovery to possible applications of nuclear technology and 		 Being able to understand nuclear properties in general, the nature of nucleus based on its 	
energy, and its corresponding nuclear waste management.		proton-neutron configuration that leads to stable and unstable nuclei, nuclear characteristics based on binding energy per nucleon, and	
alternative energy based on nuclear		concepts and measurement techniques of isotope determination.	
 Understanding poster creation with relevant themes of radioisotope decay for various applications in human life. 		being able to understand differences between hydrogen and deutron, energy levels of nucleus, nuclear interaction involved, and nuclear characteristics based on its corresponding spin and parity.	
		4. Being able to understand nuclear models and the roles of nuclear valence in controlling nuclear properties.	
		5. Being able to understand concepts of stable nuclei and radioactive nuclei, mechanisms of radioactive decay and its corresponding fundamental principles of electric charge and mass-energy conservation.	
		 Being able to understand concepts of elementary particles, classification of elementary particles, 'everything is made in pairs', and fundamental conservation laws. 	
		 Being able to understand the discovery of meson as a carrier between nucleons, types of meson, and nuclear reaction that involves meson, meson resonance. 	
		8. Being able to understand differences between nuclear fission and fusion, potential sources of alternative green energy based on hydrogen fusion, radioactive decay for various applications in human life, nuclear technology, and a nuclear power plant and its corresponding nuclear waste management.	
		 Being able to understand some issues associated with nuclear technology and its potential use for various benefits to human life 	

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Kampus Ketintang Jalan Ketintang Gedung C3 lt. 1 Surabaya 60231 E: physics@unesa.ac.id fisika.fmipa.unesa.ac.id

Management System ISO 9001:2015 www.tuv.com ID 9108650021

		through poster creation by a group of students and individual poster presentation.
Lecturer	:	Prof. Tjipto Prastowo, Ph.D
Instruction	:	Give $()$ on the column selected: 1. Adequate 2. Good 3. Very Good

No	0 Aspects		Category		
110	порт	1	2	3	
1	Instruction for solving the problems				✓
2	Suitability of each question with CLO				~
3	Level balance of easy, medium and difficult questions			1	
4	Scoring guidelines follow the points of the mark				~
5	The duration of completing the questions follows the tin	ne available		~	
6	Allows multiple alternative correct answers				
7	Each question does not depend on other questions				
8	The questions are communicative and do not have ambi	guity			~
9	Tables, pictures, graphics, maps, or the like are presented clearly and legibly (if any)				~
Indivi altern This i which on Nu	dual presentation are recorded as clips for ative Final Exam on Nuclear Physics Course. s agreement between lecturer and students, is in line with Semester Lesson Plan (SLP) iclear Physics.	Surabaya, 7 Ja Validator, Mita Anggarya NIP 19820202	anuary ni, Ph.L 200604	2021 D 2002	
Resp	onse from Lecturer:	Surabaya, 6 Ja Lecturer, Vastowa Prof. Tjipto Pra NIP 19670203	anuary 2 	2021 , Ph.D 21001	

D.5 CLASS ACADEMIC ACHIEVEMENT

PROGRAM STUDI S1 Fisika DAFTAR NILAI MAHASISWA Mata Kuliah : Fisika Inti Kelas : 2017D Tahun Ajaran : 2020/2021 Gasal

Keterangan :

1. Komponen nilai yang diisi hanya : Part, Tugas, UTS dan UAS

2. Nilai UAS mahasiswa dengan kehadiran dibawah 73.3% (kolom dg warna merah) tidak akan disimpan

3. Jangan merubah apapun di dokumen ini kecuali pada point nomer satu di atas.

4. PPTI / BAAK tidak menerima file nilai untuk diupload. Proses upload nilai dilakukan oleh dosen pengampu yang bersangkutan.

No	NIM	Nama Mahasiswa	Angkatan	Kehadiran	Part	Tugas	UTS	UAS	NA	Huruf	Pakai
1	16030224009	AQBEL QASHMAL BILHAQ	2016	100%	90	85	70	80	81,5	A-	1
2	17030224001	NOVITA DWI RAHAYU	2017	100%	90	77,5	80	80	81,25	A-	1
3	17030224002	DHINI FARIDATUL NISA	2017	100%	90	85	75	80	82,5	A-	1
4	17030224003	RETNO FITRI WULANDARI	2017	100%	90	80	85	85	84,5	A-	1
5	17030224004	FAHIRA NADIVA ERNANDI	2017	100%	90	75	75	90	82,5	A-	1
6	17030224005	ANTONY MAHENDRA	2017	100%	90	82,5	88	85	85,85	A	1
7	17030224006	TETI APRILIANI	2017	100%	90	75	85	80	81,5	A-	1
8	17030224007	IQOMATUS SA'DIYAH	2017	100%	90	75	85	80	81,5	A-	1
9	17030224008	KHOLLI VATUL NUR ISTIQOMAH	2017	100%	90	82,5	80	80	82,75	A-	1
10	17030224009	WIDYA RAHMAWATI	2017	100%	90	75	80	80	80,5	A-	1
11	17030224010	GANDHIS PUTRI AYUDIA	2017	100%	90	85	75	90	85,5	A	1
12	17030224011	ANGELA ARIN PRATAMA	2017	100%	90	80	80	80	82	A-	1
13	17030224012	HILDA RISANTI	2017	100%	90	92,5	85	90	89,75	A	1
14	17030224013	MOCH. ROMADLON ABDULLOH AKBAR	2017	100%	90	85	75	80	82,5	A-	1
15	17030224014	NUR HIDAYATI	2017	100%	90	85	80	85	85	A	1
16	17030224015	FRISKA DWI KUSUMA WARDANI	2017	100%	90	80	85	90	86	A	1
17	17030224016	SRI MAULIDIYAH MANGKUASIH	2017	100%	90	80	80	80	82	A-	1
18	17030224018	ANDRIAN DWI SAPUTRO	2017	100%	90	75	80	85	82	A-	1
19	17030224019	IANATUL HUSNIA	2017	100%	90	82,5	80	85	84,25	A-	1
20	17030224020	VIVIA MAULIDA ALFIANTI	2017	100%	90	77,5	85	80	82,25	A-	1
21	17030224021	NURIL FATHURIN	2017	100%	90	80	80	85	83,5	A-	1
22	17030224022	FIRDA RULIFIANGGA	2017	100%	90	80	80	85	83,5	A-	1
23	17030224023	LAILATUL IZZA	2017	100%	90	85	75	80	82,5	A-	1
24	17030224024	MOH. AHSANIT TAQWIM	2017	100%	90	92,5	80	80	85,75	A	1
25	17030224025	IVO NUR KHOLIFAH	2017	100%	90	85	75	85	84	A-	1
26	17030224026	SITA NURRACHMAN YURIKA	2017	100%	90	85	65	80	80,5	A-	1
27	17030224027	DIPTYA LATIFA ROHADI	2017	100%	90	77,5	75	80	80,25	A-	1
28	17030224028	BRILLIYAN HADID SETIAWAN PUTRA	2017	100%	90	92,5	75	85	86,25	A	1
29	17030224029	ELGA NILAWATI	2017	100%	90	82,5	85	80	83,75	A-	1
30	17030224030	AFANDY KADAROSMAN	2017	100%	90	75	80	80	80,5	A-	1
31	17030224031	KHARISMA FITROTUL UMMAH	2017	100%	90	80	80	80	82	A-	1
32	17030224032	ARYOGHI CAHYO NUGROHO	2017	100%	90	75	80	82	81,1	A-	1
33	17030224033	DEVI SAPUTRI	2017	100%	90	75	75	82	80,1	A-	1
34	17030224035	DAFFA MAHENDRA	2017	100%	90	92,5	75	90	87,75	A	1
35	17030224036	WINEKE ANGESTI	2017	100%	90	77,5	80	80	81,25	A-	1
36	17030224037	ERLIN ANDAYANI DEWI	2017	100%	90	80	85	90	86	A	1