MODULE HANDBOOK

Module Name	Electrochemistry Analysis	
Module level	Bachelor	
Abbreviation, if applicable	3074212050	
Sub-heading, if applicable	-	
Course included in the		
module, if applicable	-	
Semester/term	5 th / third year	
Module coordinator(s)	Dr. Pirim Setiarso, M.Si	
Lasturar(a)	Dr. Pirim Setiarso, M.Si	
Lecturer(s)	Prof. Dr. Titik Taufikur Rochmah, M.Si	
	Prof. Dr. Nita Kusumawati, M.Sc	
Language	Indonesian	
Classification within the	Compulsory Course	
curriculum		
Teaching format/class	2 hours lecturers (50 min per hours)	
hours per week during the		
semester:	2 x 50 minutes lectures 2 x 60 minutes structured estivity	
	2 x 50 minutes fectures, 2 x 60 minutes structured activity,	
Workload	2 x 00 minutes individual activity, 14 weeks per semester, 70 33 total hours per semester - 3 18 ECTS**	
Credit points:	$2 \times 1.59 - 3.18 \text{ ECTS}$	
Prerequisite course(s):	Quantitative Chemical Analysis: Basics of Chemical	
rerequisite course(s).	Separations: Spectroscopy and Chromatographic Methods	
	CLO1.2.5	
Targeted learning outcomes:	CLO 1. Capable to demonstrate knowledge related to	
	theoretical concepts about structure, dynamics, and	
	energy, as well as the basic principles of separation,	
	analysis, synthesis and characterization of chemicals	
	CLO 2. Capable to demonstrate the pedagogical knowledge	
	of chemistry in designing, implementing, and	
	evaluating chemistry learning	
	CLO5 Applying logical critical systematic and innovative	
	thinking in the context of development or	
	implementation of science, technology, and art that	
	regards and applies humanities in accordance with	
	chemistry education in solvingproblems	
	Introduction: The stages of the scientific method Analysis	
Content:	Electrochemistry as a scientific activity, material and energy,	
	extensive and intensive properties, chemical and physical	
	properties, elements, compounds, and mixtures	
	Analysia Dotontiomotry: Normat aquation on havin any horiz	
	Analysis rotentionetry: memist equation as dasic analysis	
	Detentionetrically Titration Agalyzation Detertionetric	
	Titration, Applycation Potentiometric	
	litration	

	Analysis Conductometry: Basic consept of Analysis Conductometry, Conductometry titration, Applycation ConductommetryTitration Coulommetry, Polarographhy and voltammetry : theory Coulommetry, polarography and voltammetry. Qualitative and quantitative Analysis Coulommetry polarography , voltammetry. Applycation Analysis Coulommetry polarography , voltammetry		
Study / exam achievements: Media:	Students are considered to comp obtain at least 40% of maximu (NA) is calculated based on the Assessment Components Participation Assignment Mid-semester test Final semester test Computer, LCD, White board	plete the course and pass if they im final grade. The final grade following ratio: Percentage of contribution 20% 30% 20% 30%	
Learning Methods	Individuals assignment, group assignment, discussion,		
Literature:	 Ewing G.W, 1981, Instrumental Methods Of Chemical Analysis, International Student Edition, Tokyo: McGraw- Hill Kogakusha Ltd Pecsok, et al.1976. Modern Methods of Analytical Chemistry. 2nd New York: John Wiley and Sons Sawyer, Heineman, and Beebe,1984, Chemistry Experiments for Instrumental Methods, New York : John Wiley & Sons Skoog, Douglas.A. 1982, Fundamental of Analytical Chemistry Fourth Edition Tokyo: Holt- Sounders 		
Notes:	 *1 CU in learning process = three periods consist of: (a) scheduled instruction in a classroom or laboratory (50 minutes); (b) structured activity (60 minutes); and (c) individual activity (60 minutes) according to the Regulation of Indonesia Ministry of Research, Technology, and Higher Education No. 44 Year 2015 jo. the Regulation of Indonesia Ministry of Research, Technology, and Higher Education No. 50 Year 2018. **1 CU = 1.59 ECTS according to Rector Decree Of Universitas Negeri Surabaya No. 598/UN38/Hk/Ak/2019 		