PORTOFOLIO QUANTUM CHEMISTRY

ACADEMIC YEAR 2019/2020 EVEN SEMESTER

Course Coordinator: Prof. Dr. Suyono, M.Pd.

Teaching Team: Dr. I Gusti Made Sanjaya, M.Si.

CHEMISTRY DEPARTMENT

FACULTY OF MATHEMATICS AND SCIENCE UNIVERSITAS NEGERI SURABAYA

TABLE OF CONTENT

A.	SEMESTER LEARNING ACTIVITY PLAN	4
	A.1. COURSE IDENTITY	4
4	A.2. COURSE TOPIC	5
1	A.3. COURSE PROGRAM	6
4	A.4. MAPPING OF LEARNING OUTCOMES – COURSE OUTCOMES	11
	A.4.1. The Expected Program Learning Outcomes (PLO) of Undergraduate Program of Chemistry (UPC)	
	A.4.2. The Education Program Objectives (PEOs) of (Nama MK).	11
	A4.3. Mapping of Program Learning Outcomes (PLO) – Education Program Objectives (PEOs)	
B.	COURSE ASSESSMENT	12
]	B.1. Assessment Rubric	12
]	B.2. Assessment System	12
C.	COURSE DEVELOPMENT	13
(C.1. Academic Year	13
(C.2. Problems Analysis	13
(C.3. Solutive Strategy	14
D.	APPENDICES	14
]	D.1. DOCUMENT OF COURSE ACTIVITY	14
	D.1.1. Lecture's journal and student's attendance form siakadu.uneca.ac.id	14
	D.1.2. Sample of statement of examination official report	17
]	D.2. SAMPLE OF STUDENT WORK	18
	D.2.1. Sample of Test Paper	18
	D.2.2. Sample of Student's Work	20
]	D.3. RECAPITULATION OF ASSESSMENT	25
	D.3.1. Validate Test Item	25
	D.3.2 Evaluation Results of Quantum Chemistry	25
	D.3.3 Percentage of PLO achievements of Quantum Chemistry	27

A. SEMESTER LEARNING ACTIVITY PLAN

A.1. COURSE IDENTITY

Module Name	Quantum Chemistry
Module level	Bachelor
Abbreviation, if applicable	
Sub-heading, if applicable	-
Course included in the module, if applicable	-
Semester/term	2 nd /First Year
Module coordinator(s)	Prof. Dr. Suyono, M.Pd.
Lecturer(s)	Dr. IGM Sanjaya, M.Si., Samik, S.Si., M.Si., and Findiyani E. Asih, S.Pd., M.Pd.
Language	Indonesian
Classification within the curriculum	Compulsory Course
Teaching format/class	
hours per week during the	3 hours lecturers (50 min per hours)
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or 170 minutes (50' face to face learning, 60' structured learning, and 60' independent learning). In one semester, courses are conducted in 14 weeks (excluding mid and end-term exam). Thus, 1 CU equals to 39.67 workhours per semester. One CU equals to 1.587 ECTS.
Credit points:	3 x 1.587 = 4,761 ECTS
Prerequisites course(s):	Basic Chemistry I
Targeted learning outcomes:	 Students can take advantage of digital transformation and various other learning resources to support their understanding of quantum chemistry. Students can master the concepts and basic principles of quantum chemistry which are appropriate for the structure, bonds, and characteristics of various materials in physical chemistry. Students are able to make decisions in formulating solutions to quantum chemical problems related to atomic structure, chemical bonds, molecular structure,

	molecular symmetry, spectroscopy and molecular					
	interactions.					
	4. Students have good morals, ethics and personality in					
	completing quantum chemistry assignments					
	independently or in groups and are responsible for					
	communicating the results.					
	5. Students have Ability to integrate the concept of					
	technopreneurship in quantum chemistry					
	1. Basic Concepts and Principles of Quantum Chemistry.					
	2. The application of quantum chemistry to translational,					
	vibration and rotation motion					
	3. The application of quantum chemistry to the structure of					
Content:	the hydrogen atom and the atom with many electrons					
	4. Chemical bond theory (Valence bond theory and melacular orbital theory)					
	molecular orbital theory) 5. Molecular symmetry					
	 Molecular symmetry Molecular spectroscopy 					
	7. Molecular interactions					
	Students are considered to be competent and pass if at least					
	get 55					
	Final score is calculated as follows: 20% participation +					
	30% assignment + 20% middle exam (UTS) & 30% final					
	exam (UAS)					
	Table index of graduation					
Study / exam achievements:	• A = 4 (85 ≤-≥ 100)					
	• $A^{-} = 3,75 \ (80 \le -< 85)$					
	• $B + = 3,5 (75 \le - < 80)$					
	• B = 3 (70 $\leq -<75$)					
	• B- = 2,75 ($65 \le -<75$)					
	• $C+=2,5 \ (60 \le -<65)$					
	• C = 2 (55 $\leq -<60$)					
	• D = 1 (40 $\leq -<55$)					
N.C. 1'	• $E = 0 (0 \le -40)$					
Media:	Computer, LCD, White board, internet					
Learning Methods	Individuals assignment, group assignment, discussion, and					
6	presentation					
	1. Atkins, P., Paula, J.d., and Keeler, J. 2018. Atkin's					
	Physical Chemistry, 11th edition. New York: Oxford					
	University Press.					
Literature:	-					
	2. Levine, Ira N. 2014. Quantum chemistry, 7th edition.					
	New York: Pearson Education, Inc					
	3. Mortimer, R.G. 2008, Physical Chemistry, 3th edition,					
	London: Elsevier Inc.					
Note						

A.2. COURSE TOPIC

This course topic are quantum chemistry and its application of atomic structure, chemical bonds, molecular structure, properties of matter, molecular symmetry, spectroscopy and molecular interactions. This course is presented in theory, practice, and simple engineering through literacy, discussion, and assignments.

A.3. COURSE PROGRAM

UNIVERSITAS NEGERI SURABAYA FACULTY OF MATHEMATICS AND NATURAL SCIENCE UNDERGRADUATE PROGRAMME OF CHEMISTRY

Document Code

	SEMESTER LEARNING ACTIVITY PLAN								
COURSE			CODE	Course	Course Group		Credit Unit		Date
Quantum Chemistry			3074213020	Compul	sory	3	SCU	2	6 January 2020
AUTHORIZATION			Compiler		Coordinator			Head of Stud	ly Program
CHEMISTRY					Prof. Dr. Suyono, M.P	d.		Dr. Amaria,	M.Si.
Learning Outcomes	Program Lea	arning Outco	mes (PLO)						
	PLO1 (KNO-1)		aster the concepts of struction of mice				•	nciples of sepa	aration, analysis,
PLO8 Able to ad			lapt to various developments in chemistry, continue to develop and learn throughout long-life education, both						
	(SOC-2)	formal and	nonformal						
			(
		ning Outcom							
	CLO1	Students	can take advantage of digital transformation and various other learning resources to support their						
		understan	ding of quantum chemistr	y.					
	CLO2	Students	s can master the concepts and basic principles of quantum chemistry which are appropriate for the						
		structure,	bonds, and characteristics	s of vario	us materials in physica	al chemis	stry.		
	CLO3	Students a	are able to make decision	ns in form	nulating solutions to a	quantum	chemica	l problems re	lated to atomic
structure, chemical bonds, molecular structure, molecular symmetry, spectroscopy and molecular interaction				interactions.					
CLO4 Students			s have good morals, ethics and personality in completing quantum chemistry assignments independently						
		or in grou	ps and are responsible for	commur	icating the results.				
	CLO4	Students h	ents have Ability to integrate the concept of technopreneurship in quantum chemistry						

	Sub CLO	
	Sub-CLO1	Students are able to master the achievement targets of quantum chemistry course
	Sub-CLO2	Students are able to understand the basic principles of quantum chemistry
	Sub-CLO3	Students are able to apply quantum chemistry on translational motion
	Sub-CLO4	Students are able to apply quantum chemistry on vibrational motion
	Sub-CLO5	Students are able to apply quantum chemistry on rotational motion
	Sub-CLO6	Students are able to determine the structure and spectra of hydrogen atoms
	Sub-CLO7	Students are able to determine the structure and spectra of complex atoms
	Sub-CLO9	Students are able to understand valence bond theory or VBT
	Sub-CLO10	Students are able to understand MOT for diatomic molecules
	Sub-CLO11	Students are able to understand MOT for polyatomic molecules
	Sub-CLO12	Students are able to understand the basic principles of molecular symmetry
	Sub-CLO13	Students are able to apply symmetry and group symmetry of a molecule
	Sub-CLO14	Students are able to understand the basic principles of molecular spectroscopy
	Sub-CLO15	Students are able to understand molecules related interactions which with the electrical and interfacial properties of a
		matter
Brief Description of		studies quantum chemistry and its application of atomic structure, chemical bonds, molecular structure, properties
the Course		olecular symmetry, spectroscopy and molecular interactions. This course is presented in theory, practice, and simple
		through literacy, discussion, and assignments.
Study Materials:		oncepts and Principles of Quantum Chemistry.
Learning Materials		lication of quantum chemistry to translational, vibration and rotation motion
		lication of quantum chemistry to the structure of the hydrogen atom and the atom with many electrons al bond theory (Valence bond theory and molecular orbital theory)
		ar symmetry
		ar spectroscopy
		ar interactions
Reference Main :		
	-	P., Paula, J.d., and Keeler, J. 2018. Atkin's Physical Chemistry, 11th edition. New York: Oxford University Press.
		Ira N. 2014. Quantum chemistry, 7th edition. New York: Pearson Education, Inc
	Additional :	The rest 201 in Quantum chemistry, 7th edition rees routen Education, me
	Auunional.	

		1. Mortime	r, R.G. 2008, Physical Ch	nemistry, 3th edition	, London: Elsevie	r Inc.		
Lecture			njaya, M.Si., Samik, S.Si	., M.Si., and Findiya	ani E. Asih, S.Pd.,	M.Pd.		
Prereq	uisite courses	Basic Chem	nistry I					
Meetin g	The final abi activ	•	Assessm	ent	Learnin	ing Forms, ng Methods, : Assignment	Reference	Rating Weight
C C		•	Indicator	Criteria & Form	Offline	online		(%)
(1)	(2	2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Mastering the targets of chemistry cours	quantum	Mentioning the achievements of quantum chemistry course	Introduction and contract of quantum chemistry Essay Test		Presentation and discussion	RPS KF I	0
2	Understanding principles of qu chemistry		Distinguishing Schrodinger equations based on dependent and independent time	The basic principles of Quantum Chemistry		Presentation and discussion	Ref. 1 hal 249 - 287 Ref. 2	10
3	Applying quant on translationa		Defining function waves of particle, energy and density of particles in squares of 1, 2, and 3 dimensions	Essay Test Application of translational motion Essay Test		Presentation and discussion	Ref. 1 hal 288 - 300 Ref. 2	5
4	Applying quant on vibrational r		Determining the wave function of the particle and the energy levels of the vibrational motion	Application of vibrational motion Essay Test		Presentation and discussion	Ref. 1 hal 300 - 306 Ref. 2	5
5	Applying quant on rotational m	•	Determining the wave function of the particle	Application of rotational motion		Presentation and discussion	Ref. 1 hal 306 - 323	5

		and the rotational				Ref. 2	
		energy levels	Essay Test				
6	Determining the structure	Determining the	structure and		Presentation and	Ref I hal 324 –	10
	and spectra of hydrogen	structure, shape and	spectra of		discussion	338	
	atoms	energy of atomic	Hydrogen atom			Ref. 2	
		orbitals, and hydrogen					
		spectra	Essay Test				
7	Determining the structure	Analyzing orbital	structure and		Presentation and	Ref I hal 338 –	10
	and spectra of complex	approximation and term	spectra of		discussion	370	
	atoms	symbol	Complex atom				
			Essay Test				
8		l	Mid-Term Exan	n		1	
9	Understanding valence bond	Explaining VBT of	Valence bond		Presentation and	Ref I hal 371 - 377	5
	theory or VBT	diatomic and	theory		discussion		
		polyatomic molecules					
			Essay Test				
10	Understanding MOT for	Writing the electron	MOT for diatomic		Presentation and	Ref I hal 378 –	5
	diatomic molecules	configuration of a	molecules		discussion	395	
		diatomic molecule					
			Essay Test				
11	Understanding MOT for	Describing the	MOT for		Presentation and	Ref I hal 395 –	10
	polyatomic molecules	electronic structure of a	polyatomic		discussion	401	
		polyatomic molecules	molecules				
- 13			Essay Test		D		
12	Understanding the basic	Defining elements and	The basic		Presentation and	Ref I hal 409 –	10
	principles of molecular	operations on molecular	principles of		discussion	426	
	symmetry	symmetry	molecular				
			symmetry				
			Facal / Tast				
			Essay Test				

13	Applying symmetry and group symmetry of a molecule	Analyzing the group symmetry of a molecule	Symmetry and group symmetry of a molecule Essay Test	F	Presentation and discussion	Ref I hal 427 – 444	10
14	Understanding the basic principles of molecular spectroscopy	Distinguishing between translational, vibrational and rotational spectra	The basic principles of molecular spectroscopy Essay Test	F	Presentation and discussion	Ref I hal 445 – 563	5
15	Understanding molecules related interactions which with the electrical and interfacial properties of a matter	Analyzing the molecular interactions which produce the electrical and interfacial properties of a material	The molecular interactions which produce the electrical and interfacial properties of a material	F	Presentation and discussion	Ref I hal 340 – 370	10
16			Essay Test Final Exams				100

A.4. MAPPING OF LEARNING OUTCOMES – COURSE OUTCOMES

A.4.1. The Expected Program Learning Outcomes (PLO) of Undergraduate Program of Chemistry (UPC)

ASPECTS	PLO	CODE
KNOWLEDGE	1. Able to master the concepts of structure, dynamics and energy, as well as the basic principles of separation, analysis, synthesis, and characterization of micromolecular compounds and their applications	KNO-1
	2. Able to master the basic principles and knowledge of how to operationalize instruments for the analysis and characterization of compounds, as well as utilizing ICT for modeling more specific molecules	KNO-2
SKIL	3. Able to master the principles of Occupational Health and Safety, manage laboratories and use their equipment, and operate instrumental of chemistry	SKI-1
SKIL	4. Able to design an activity to solve problems by implementing capabilities in the field of chemistry that refers to ecopreunership	SKI-2
COMPETENCIES	5. Able to apply logical, critical, systematic and innovative thinking in the context of the development or implementation of science and technology by observe and applying the value of humanities in accordance with the field of chemistry in solving problems	COM-1
COMPETENCIES	6. Able to master the basics of the scientific method, designing and conducting research, compiling scientific reports and communicating them both verbally and in writing by utilizing information and communication technology	COM-2
ATTITUDE AND SOCIAL	7. Able to build teamwork and have entrepreneurial skills that are environmental perspective, and make the right, honest and responsible decisions in solving problems of chemistry and have social sensitivity as a obligation of citizens and religious communities	SOC-1
	8. Able to adapt to various developments in chemistry, continue to develop and learn throughout long-life education, both formal and nonformal	SOC-2

A.4.2. The Education Program Objectives (PEOs) of Quantum Chemistry

A4.3. Mapping of Program Learning Outcomes (PLO) – Education Program Objectives (PEOs)

	PLO 1	PLO 8
	(KNO-1)	(SOC-2)
PEO 1	S	NS
PEO 3	S	S

B. COURSE ASSESSMENT

B.1. Assessment Rubric

Cognitive Criteria

- 1. The ability to give answers correctly
- 2. The ability to provide argumentation according to theory
- 3. The ability to provide systematic explanations
- 4. The ability to solve problems comprehensively

B.2. Assessment System

Final Assessment Course without	ut practicum
Practicum	: 0%
Group/Individuals Assignment	: 30%
Midterm examination	: 30%
Final examination	: 40%

Distribution of the weight of the ability of the test item

	PLO 1 (KNO-1)	PLO 8 (SOC-2)	Total
Practicum	0%	0%	0%
Group/Individuals Assignment	60%	40%	100%
Midterm examination	80%	20%	100%
Final examination	70%	30%	100%

Success Criteria of Program Learning Outcomes (PLO)

Excellent	≥ 80
Good	≥ 70
Satisfy	≥ 55
Failed	< 55

Final Index	Range
А	4 (85 ≤-≥ 100)
A	3,75 (80 ≤-< 85)
B+	3,5 (75 ≤- < 80)
В	3 (70 ≤-< 75)
В-	2,75 (65 ≤-<70)
C+	2,5 (60 ≤-<65)
C	2 (55 ≤-<60)
D	1 (40 ≤-<55)
E	0 (0 ≤-<40)

Final index for undergraduate program defined as follow:

C. COURSE DEVELOPMENT

C.1. Academic Year 2019/2020

Parameter	\sum of person	Percentage
Number or students taking this subject	67	100%
Number of students who pass at first attempt (>B ⁻)	64	95.6%
Number of students who pass at first attempt ($C \ge - \le B^-$)	2	2.9%
Number of failed students after remedial (D & E)	1	1.5%

C.2. Problems Analysis

In 2019/2020 academic year in the quantum chemistry course, there were 98.5 % of students who had passed the examination at the first attempt. At the end of the semester examination, there is remedial for one student. There is one student who did not graduate because the student did not take the final exam. There are 66 students who graduated in above standard >70, but 2 students in below standard, namely $55 \ge x < 70$. So, it concluded that the learning strategy/methods still need to be improved for achieving higher results in the future. The average final score in 2019/2020 is lower than before, due to students have different characteristics, namely they difficult to cooperate with their group and not serious when doing the task, therefore the have lack of average score.

C.3. Solutive Strategy

New teaching and learning methods should be developed for the next academic years, consisting of:

- 1. Redesigning the course material (PPT slides, course contents, etc.) to become more interesting and interactive to stimulate student's interest in this course.
- 2. Giving "lecture by online" to stimulate our students to learn about the next lecture topics.
- 3. Enhance the cooperative skills of students with exchange the methods and models of learning

D. APPENDICES

D.1. DOCUMENT OF COURSE ACTIVITY

D.1.1. Lecture's journal and student's attendance

6/19/2021

SIAKADU: Cetak Jurnal Perkuliahan

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA Kampus Ketintang Jalan Ketintang, Surabaya 60231 T: +6231-8293484 F: +6231-8293484 Jaman: unesa.ac.id email : bakpk@unesa.ac.id

Aktivitas Perkuliahan

Kelas		:2019A	l: Kimia Kuantum (13.00 - 15.30) R.			I GUSTI MADE SANJ/ (1965120419930210 SAMIK (1983080620	001)	
No.	Tanggal	Pertemuan	Topik	Peserta	Status	Dosen	Kesesuaian	Saran
1	04-02- 2020	Pertemuan ke 1	Pengantar dan kontrak perkuliahan kimia kuantum	34	Terjadwal	l Gusti Made Sanjaya	Sesuai	
2	11-02- 2020	Pertemuan ke 2	Dasar-dasar Kimia Kuantum	34	Terjadwal	l Gusti Made Sanjaya	Sesuai	
3	18-02- 2020	Pertemuan ke 3	Kuantum gerak translasi.	34	Terjadwal	l Gusti Made Sanjaya	Sesuai	
-		1 -	-					
4	25-02- 2020	Pertemuan ke 4	Kuantum gerak vibrasi.	34	Terjadwal	l Gusti Made Sanjaya	Sesuai	
5	03-03- 2020	Pertemuan ke 5	Kuantum gerak rotasi.	34	Terjadwal	I Gusti Made Sanjaya	Sesuai	
6	10-03- 2020	Pertemuan ke 6	struktur dan spektra atom hidrogen	34	Terjadwal	l Gusti Made Sanjaya	Sesuai	
7	17-03- 2020	Pertemuan ke 7	Struktur dan spektra atom kompleks	34	Terjadwal	l Gusti Made Sanjaya	Sesuai	
8	24-03- 2020	Pertemuan ke 8	UTS	34	Terjadwal	l Gusti Made Sanjaya		
9	31-03- 2020	Pertemuan ke 9	VBT	34	Terjadwal	l Gusti Made Sanjaya		
10	07-04- 2020	Pertemuan ke 10	MOT molekul diatomik	34	Terjadwal	l Gusti Made Sanjaya		
11	14-04- 2020	Pertemuan ke 11	MOT molekul poliatomik	34	Terjadwal	I Gusti Made Sanjaya		
12	21-04- 2020	Pertemuan ke 12	Unsur dan operasi simetri	34	Terjadwal	l Gusti Made Sanjaya		

13	28-04- 2020	Pertemuan ke 13	Penerapan simetri molekul	34	Terjadwal	I Gusti Made Sanjaya	
14	05-05- 2020	Pertemuan ke 14	Spektroskopi molekul	34	Terjadwal	I Gusti Made Sanjaya	
15	12-05- 2020	Pertemuan ke 15	Interaksi molekul	34	Terjadwal	I Gusti Made Sanjaya	

https://siakadu.unesa.ac.id/a8f3c712-1130-39df-8be8-c3132c293af7.aspx?id=d8ce47f7-7107-310e-9372-e345c0928492&cetak_jurnal=1

1/1

6/19/2021

SIAKADU: Cetak Jurnal Perkuliahan

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA Kampus Ketintang Jalan Ketintang, Surabaya 60231 T: +6231-8293484 F: +6231-8293484 Iaman: unesa.ac.id email : bakpk@unesa.ac.id

Aktivitas Perkuliahan

Kelas		: Kimia Fisika I: Kimia Kuantum : 2019B		Dosen :		l GUSTI MADE SANJAYA (196512041993021001) SAMIK (198308062012121001)				
	l & Ruang	1.000.000.000.000.000.000	(13.00 - 15.30) R.			n e character				
No.	Tanggal	Pertemuan	Topik	Peserta	Status	Dosen	Kesesuaian	Saran		
1	04-02- 2020	Pertemuan ke 1	Pengantar dan kontrak perkuliahan kimia kuantum	32	Terjadwal	l Gusti Made Sanjaya	Sesuai			
2	11-02- 2020	Pertemuan ke 2	Dasar-dasar Kimia Kuantum	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
3	18-02- 2020	Pertemuan ke 3	Kuantum gerak translasi.	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
4	25-02- 2020	Pertemuan ke 4	Kuantum gerak vibrasi.	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
5	03-03- 2020	Pertemuan ke 5	Kuantum gerak rotasi.	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
6	10-03- 2020	Pertemuan ke 6	struktur dan spektra atom hidrogen	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
7	17-03- 2020	Pertemuan ke 7	Struktur dan spektra atom kompleks	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
8	24-03- 2020	Pertemuan ke 8	UTS	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
9	31-03- 2020	Pertemuan ke 9	VBT	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
10	07-04- 2020	Pertemuan ke 10	MOT molekul diatomik	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
11	14-04- 2020	Pertemuan ke 11	MOT molekul poliatomik	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			
12	21-04- 2020	Pertemuan ke 12	Unsur dan operasi simetri	33	Terjadwal	l Gusti Made Sanjaya	Sesuai			

13	28-04- 2020	Pertemuan ke 13	Penerapan simetri molekul	33	Terjadwal	l Gusti Made Sanjaya	Sesuai
14	05-05- 2020	Pertemuan ke 14	Spektroskopi molekul	33	Terjadwal	l Gusti Made Sanjaya	Sesuai
15	12-05- 2020	Pertemuan ke 15	Interaksi molekul	33	Terjadwal	l Gusti Made Sanjaya	Sesuai

https://siakadu.unesa.ac.id/a8f3c712-1130-39df-8be8-c3132c293af7.aspx?id=3dbe5b14-203b-3627-afd7-48e2fe5bea38&cetak_jumal=1

1/1

D.1.2. Sample of statement of examination official report

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN KIMIA KampusKetintang , 60231 Telepon: +6231- 8298761 Faksimile : +6231- 8298761 e-mail kimia@unesa.ac.i

BERITA ACARA UJIAN AKHIR SEMESTER

Pada hari ini Kamis tanggal 14 Mei 2020 telah dilaksanakan Ujian Akhir Semester (UAS) daring

Semester Genap 2019 – 2020 via *Google Classroom*. Ujian dimulai pukul **12.00** dan di akhiri pukul **13.40** selama **100** menit.

Program Studi	: Kimia	
Mata Kuliah yang diujikar	a : Kimia Fisika I	
Kelas	: KA 2019	
Dosen Pengampu	: Tim	
Jumlah Peserta	: 34 orang	
Jumlah Hadir	: 34 orang	
Jumlah Tidak Hadir	: 0 orang, yaitu	
1 4	h	7.

2	5	8
3	6	9

.....

Kejadian selama ujian berlangsung.

Nama Pengawas :	1	Tanda Tangan :	1
	2		2
	3		3
	4		4

-

Demikian Berita Acara Ujian Akhir Semester

Ditetapkan di : Surabaya Pada tanggal : 14 Mei 2020 Panitia Ujian Akhir Semester Genap 2019/2020

Dr. Maria Monica S. B. W, M.Si NIP. 196405031992022001

Tembusan :

Berita acara ini dibuat rangkap dua untuk jurusan 1 lembar dan fakultas 1 lebar

D.2. SAMPLE OF STUDENT WORK

D.2.1. Sample of Test Paper KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN KIMIA Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8298761, email: kimia@unesa.ac.id, Laman : http://kimia.fmipa.unesa.ac.id

SOAL UJIAN AKHIR SEMESTER GENAP 2019/2020

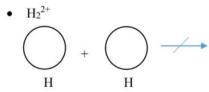
Mata Ujian: Kimia Fisika I: Kimia KuantumJurusan/Fakultas: Kimia / MIPAProgram/Angkatan: Kimia/Kimia/2019Hari/Tanggal mulai: Kamis, 14 Mei 2020Waktu: Jam III (12.00-13.40, 100 menit)Dosen: TimSifat Ujian: Open Book/Source

Jawablah Soal-soal berikut dalam dokumen Ms-Word!

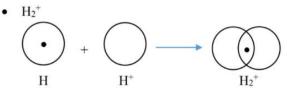
- Analisis pada spesi kimia berikut ini yang mana menghasilkan ikatan kimia, yang mana hanya menghasilkan gaya ikat fisik, dan yang mana tidak menghasilkan ikatan yaitu: H2²⁺, H2⁺, H2⁻, H2⁺, H2⁺, H2⁻, H2⁺, H2⁻, B2⁺, B2
- Menurut teori VBT ikatan terjadi melalui tumpangsuh orbital valensi yang memungkinkan terjadinya pembentukan orbital hibrida. Bila ini melibatkan 1 orbital s dan 2 orbital p, jelaskan:
 a. Jenis orbital hibrida apakah yang terbentuk serta sebutkan berapa jumlahnya, (Nilai 10)
 - b. Jenis ikatan apa saja yang terjadi, berapa jumlahnya masing-masing dan terjadi melalui tumpangsuh yang seperti apa.
 - c. Apakah pembentukan orbital hybrid tersebut selalu didahului dengan terjadinya promosi elektron dan mengapa hal itu terjadi? (Nilai 10)
- 3. Bila suatu orbital suatu molekul ψ_{\pm} dibentuk dari orbital atom A yang disimbolkan dengan ϕ_A dan orbital atom B yang disimbolkan dengan ϕ_B , maka
 - a. tuliskan simbol fungsi gelombang dari masing-masing orbital molekul yang terbentuk dan lengkapi dengan gambar dari masing-masing bentuk fungsi gelombang tersebut. (Nilai 10)
 - b. tuliskan simbol kerapatan elektron yang dihasilkan dari masing-masing orbital molekul yang terbentuk dan lengkapi dengan gambar bentuk kerapatannya. (Nilai 10)
 - Berdasarkan hasil kerapatan elektron menurut poin 3.b., jelaskan bagaimana syarat agar dapat membedakan antara pembentukan ikatan kovalen non-polar, ikatan kovalen polar, dan ikatan ion. (Nilai 10)

- 4. Perhatikan molekul-molekul CH4, CH3Cl, CH2ClF, dan CHIClF.
 - Analisis apakah keempat molekul tersebut memiliki elemen simetri dan operasi simetri yang sama? (Lengkapi jawaban Anda dengan data elemen dan operasi simetri dari masing-masing molekul tersebut) (Nilai 10)
 - b. Analisis apakah keempat molekul memiliki group simetri yang sama? (lengkapi jawaban Anda dengan identifikasi group simetri masing-masing molekul tersebut) (Nilai 10)

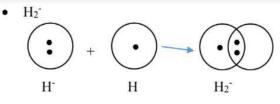
www.unesa.ac.id | "Growing with character"



s.

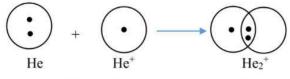

KIMIA FISIKA I: KIMIA KUANTUM

Atha Aurelia Alora Asis / 19030234004 / KA2019

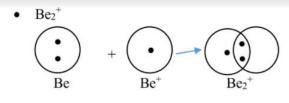

1. Analisis Ikatan, terjadi saat tumpang tindih, ada pemakaian e- bersamaan

Tidak terjadi ikatan kimia, hanya terjadi ikatan fisik

Terjadi ikatan kimia, terjadi ikatan fisik

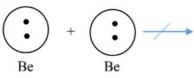


Terjadi ikatan kimia, terjadi ikatan fisik

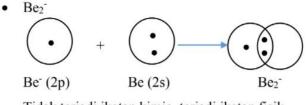

• $\operatorname{He_2^{4+}}_{\operatorname{He^{2+}}}$ + $\operatorname{He^{2+}}_{\operatorname{He^{2+}}}$

Tidak terjadi ikatan kimia, terjadi ikatan fisik

• He₂⁺

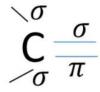


Terjadi ikatan kimia, terjadi ikatan fisik



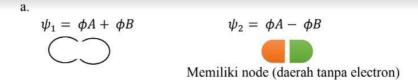
Terjadi ikatan kimia, terjadi ikatan fisik

• Be₂



Tidak terjadi ikatan kimia, terjadi ikatan fisik

Tidak terjadi ikatan kimia, terjadi ikatan fisik


- 2. Hibrida pada 1 orbital s dan 2 orbital p
 - a. 1 orbital s dan 2 orbital p dapat menghasilkan jenis orbital hibrida sp². Jumlah dari orbital hibrid tersebut 3sp² dan memiliki 1 p yang unhibrid.
 - b. Pada pembentukan orbital hibrida yang melibatkan 1 orbital s dan 2 orbital p dengan memiliki orbital hibrid sp² maka akan menghasilkan jenis ikatan σ dan π . Pada orbital hibrid sp² akan memiliki 2 ikatan tunggal yang akan mengikat 2 unsur lain dan juga memiliki 1 ikatan ganda yang mengikat unsur lainnya.

Pada ikatan tunggal terbentuk ikatan σ dengan tumpangsuh sp² – s

Pada ikatan rangkap terbentuk ikatan σ dan π , dengan ikatan sigma dengan tumpangsuh sp² – sp². Dan ikatan π dengan tumpangsuh p – p.

- c. Orbital hybrid ini selalu didahului dengan terjadinya promosi elektron dari keadaan dasar menjadi terhibridisasi. Jika tidak dilakukan promosi, maka tidak akan memiliki orbital yang dapat mengikat 3 unsur dengan 2 ikatan tunggal dan 1 ikatan rangkap. Jika dilakukan promosi dan terjadi hibridisasi, maka dapat memiliki orbital yang cukup untuk dapat berikatan dengan 3 unsur lainnya. Pada keadaan dasar memiliki konfigurasi $2s^2$ dan $2p^2$, pada konfigurasi tersebut hanya memiliki 2 orbital yang dapat menerima elektron dari unsur lain dan dengan keadaan terhibridisasi konfigurasi menjadi $2s^1 2p_x^1 2p_y^1 2p_z^1$ dari konfigurasi tersebut tampak bahwa dapat berikatan dengan lebih dari 2 unsur.
- 3. Bila suatu orbital suatu molekul ψ ± dibentuk dari orbital atom A yang disimbolkan dengan φ A dan orbital atom B yang disimbolkan dengan φ B, maka,

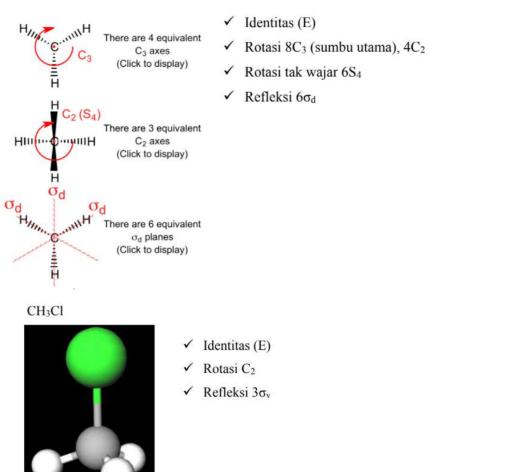
$$\psi_1^2 = N^2 ((\phi(A) + \phi(B))^2)$$

Gambar kerapatan :

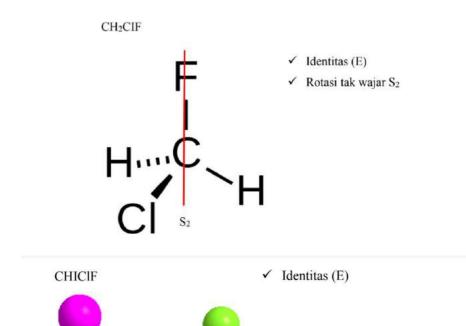
L

Interferensi konstruksi di daerah antar inti

Rapatan peluang elektron


$$\psi^2 = N^2 ((\psi_{1s}(\phi A) - (\phi B))^2$$

c. Ikatan kovalen kutub terdiri atas dua elektron pada orbital yang terbentuk


 $\psi = c_A \phi(A) + c_B \phi(B)$

Dengan koefisien yang tidak sama. Perbandingan orbital atom $\psi(A)$ di dalam ikatan adalah c_A^2 dan pada perbandingan $\psi(B)$ adalah c_B^2 .

- Ikatan nonpolar (diatomik homonuklir) : $c_A^2 = c_B^2$
- Ikatan ionik murni : mempunyai satu koefisien nol (A⁺B⁻ akan mempunyai c_A = 0 dan c_B = 1)
- Ikatan polar : $|C_A|^2 > 0$ atau $|C_B|^2 > 1$
- 4. Molekul CH4, CH3Cl, CH2ClF, dan CHIClF
 - a. CH4

Methane T_d

Dari keempat molekul diatas, tidak semuanya memiliki elemen dan operasi simetri yang sama.

- b. Identifikasi grup simetri
 - CH₄

x linier \rightarrow x 2 atau lebih C₅ \rightarrow x 2 atau lebih C₄ \rightarrow ada 4C₃ \rightarrow ada $\sigma \rightarrow$ x inversi \rightarrow Td

• CH₃Cl

x linier \rightarrow x 2 atau lebih C₅ \rightarrow x 2 atau lebih C₄ \rightarrow x 4C₃ \rightarrow ada C_n, n>1 \rightarrow x C₂ tegak lurus Cn \rightarrow x $\sigma_h \rightarrow$ ada n $\sigma_v \rightarrow$ C_{nv} = C_{3v}

• CH₂ClF

x linier \rightarrow x 2 atau lebih C₅ \rightarrow x 2 atau lebih C₄ \rightarrow x 4C₃ \rightarrow x C_n, n>1 \rightarrow x $\sigma \rightarrow$ x inversi \rightarrow C₁

CHICIF

x linier \rightarrow x 2 atau lebih C₅ \rightarrow x 2 atau lebih C₄ \rightarrow x 4C₃ \rightarrow x C_n, n>1 \rightarrow x $\sigma \rightarrow$ x inversi \rightarrow C₁

D.3. RECAPITULATION OF ASSESSMENT

D.3.1. Validate Test Item

The end-of-semester evaluation questions consist of four items in the form of essay questions analyzed content through experts in the appropriate field of Quantum Chemistry. Essay questions are validated with expert judgment in the course team members. The analysis was conducted by taking into account several aspects, namely the suitability of the questions with the course outcome, language, content and construct.

D.3.2 Evaluation Results of Quantum Chemistry

PROGRAM STUDI	S1 Kimia				Original data :	
DAFTAR NILAI MA	HASISWA				 Failth-Cole 	
Mata Kuliah : Kimi	a Fisika I: Kimia Kuantum				El Ma El	
Kelas : 2019A					1.465.6	6
Tahun Ajaran : 20	19/2020 Genap				- 305 S (2)	8X
					- Kayathaa	C-St
Keterangan :					172 T 72	Ŭ
1. Komponen nilai	yang diisi hanya : Part,Tugas,UT	S dan UAS				
2. Nilai UAS mahas	siswa dengan kehadiran dibawał	n 73.3% <mark>(kolom dg</mark> warr	ia merah) tidak akan	disimpan		
3. Jangan merubal	h apapun di dokumen ini kecuali	pada point nomer satu	di atas.			
4. PPTI / BAAK tida	ak menerima file nilai untuk diup	load. Proses upload nila	ai dilakukan oleh dos	en pengampu y	ang bersangkutan.	

No	NIM	Nama Mahasiswa	Angkatan	Kehadiran	Part	Tugas	UTS	UAS	NA	Huruf	Pakai
1	19030234002	SINTA ANJAS CAHYANI	2019	100%	85	85	75	76	80.3	A-	1
2	19030234004	ATHA AURELIA ALORA ASIS	2019	100%	85	85	75	77	80.6	A-	1
3	19030234005	SYANANDA ZAHRA FADILA	2019	100%	85	85	75	75	80	A-	1
4	19030234006	ELVIRA RATNA AISA	2019	100%	85	85	75	83	82.4	A-	1
5	19030234007	GATI NURHIDAYAH	2019	100%	85	85	75	76	80.3	A-	1
				ł							,
6	19030234008	INDIRA DWI AULIA	2019	100%	85	85	75	78	80.9	A-	1
	19030234009	EKA FARADILA OKTANINGTIAS	2019	100%	85	85	75	79	81.2	A-	1
8	19030234011	NUNIK TRI RAHAYU	2019	100%	85	85	75	76	80.3	A-	1
9	19030234012	ELYS SAFITRI	2019	100%	85	85	75	78	80.9	A-	1
10	19030234013	NABILA SYAFA'ATI	2019	100%	85	85	75	76	80.3	A-	1
11	19030234014	GLADYS JAVANI	2019	100%	85	85	75	76	80.3	A-	1
12	19030234016	AHMAD RUDI SETIAWAN	2019	100%	85	85	75	76	80.3	A-	1
13	19030234019	SHABIHISMA AULIYA NURDIN	2019	100%	80	75	75	0	53.5	D	1
14	19030234020	FIFIN SETIANI	2019	100%	85	85	75	75	80	A-	1
15	19030234021	RAHMA NURISNAINI	2019	100%	85	85	75	76	80.3	A-	1
16	19030234023	PUTRI AISYAH NURHIDAYAH	2019	100%	85	85	75	76	80.3	A-	1
17	19030234024	PUTRI AMALIA PUSPITASARI	2019	100%	85	85	75	76	80.3	A-	1
18	19030234026	AWIDDAH ZUHROH NABILA	2019	100%	85	85	75	76	80.3	A-	1
19	19030234027	SILFIA INDAH ACHRIFA	2019	100%	85	85	75	76	80.3	A-	1
20	19030234028	ARDIKA PRASETYA AJI	2019	100%	85	85	75	76	80.3	A-	1
21	19030234030	NUR ANISA ROSYIIDAH	2019	100%	85	85	75	76	80.3	A-	1
22	19030234032	INDRI WASA ESTININGTYAS	2019	100%	85	85	75	76	80.3	A-	1
23	19030234034	WIDI SALSABILA	2019	100%	80	80	75	76	77.8	B+	1
24	19030234036	LUKLUKUL FITRIYAH	2019	100%	85	85	75	77	80.6	A-	1
25	19030234038	ARFINDA MULYA DEWI	2019	100%	85	85	75	81	81.8	A-	1
26	19030234040	AHMAD MISBAKHUS SURURI	2019	100%	85	85	75	78	80.9	A-	1
27	19030234044	MUKHLASH IMADUDDIN	2019	100%	85	85	75	75	80	A-	1
28	19030234045	M. IQBAL AL GHIFARI	2019	100%	85	85	75	76	80.3	A-	1
29	19030234047	QOMARIYAH AGUSTIN	2019	100%	85	85	75	76	80.3	A-	1
30	19030234057	FISTARA LESTI RAHMAFITRIA	2019	100%	85	85	75	76	80.3	A-	1
31	19030234059	HALIMATUN NAFISAH	2019	100%	0	70	75	76	58.8	С	1
32	19030234060	NUR HANDINI PRISMA KUSTANTI	2019	100%	85	85	75	76	80.3	A-	1
33	19030234062	VANI DWI HANI PUTRI	2019	100%	85	85	75	76	80.3	A-	1
34	19030234065	DHEA ANGGRAINI PUTRI	2019	100%	85	85	75	82	82.1	A-	1

PROGRAM STUDI S1 Kimia	Original data :
DAFTAR NILAI MAHASISWA	
Mata Kuliah : Kimia Fisika I: Kimia Kuantum	
Kelas : 2019B	23272330d3/
Tahun Ajaran : 2019/2020 Genap	16.52535.5
Keterangan :	
1. Komponen nilai yang diisi hanya : Part,Tugas,UTS dan UAS	

1. Komponen nilai yang diisi hanya : Part,Tugas,UTS dan UAS 2. Nilai UAS mahasiswa dengan kehadiran dibawah 73.3% (kolom dg warna merah) tidak akan disimpan

3. Jangan merubah apapun di dokumen ini kecuali pada point nomer satu di atas.

4. PPTI / BAAK tidak menerima file nilai untuk diupload. Proses upload nilai dilakukan oleh dosen pengampu yang bersangkutan.

											_
No	NIM	Nama Mahasiswa	Angkatan	Kehadiran	Part	Tugas	UTS	UAS	NA	Huruf	Pakai
1	19030234001	KARIZA ALYA AULIA FIRDAUS	2019	100%	85	85	75	78	80.9	A-	1
2	19030234003	ALVISYAH NAZAREND	2019	100%	85	85	75	80	81.5	A-	1
3	19030234010	MUFIDATUL ILMIAH	2019	100%	85	85	75	81	81.8	A-	1
4	19030234015	MAS IDATUL UMAH	2019	100%	85	85	75	82	82.1	A-	1
5	19030234017	MOHAMMAD NURUL MUSTOFA	2019	100%	85	85	75	79	81.2	A-	1
6	19030234022	SHEVY KARUNIA CAHYANINGTIAS	2019	100%	85	85	75	78	80.9	A-	1
	19030234025	SAKURA PUTRI TANAKA	2019	100%	85	85	75	78	80.9	A-	1
	19030234029	BEBY PUTRI RAHAYU	2019	100%	80	75	0	75	61	C+	1
9	19030234031	NADIAH ARMADANTI SALMA	2019	100%	85	85	75	76	80.3	A-	1
10	19030234033	RIKA SARI	2019	100%	85	85	75	75	80	A-	1
11	19030234037	SITI NOVITA SARI ULFA	2019	100%	85	85	75	77	80.6	A-	1
12	19030234039	KHARISMA NARESWARI WAHYANTO	2019	100%	85	85	75	82	82.1	A-	1
13	19030234041	SITI NUR KOMARIYAH	2019	100%	85	85	75	84	82.7	A-	1
14	19030234042	CINDHA PUSPA RISKYTAMA	2019	100%	85	85	75	80	81.5	A-	1
15	19030234043	RISTI WULANINGTYAS	2019	100%	85	85	75	83	82.4	A-	1
16	19030234046	NUR AZIZAH WANDA TRIYARUHANA	2019	100%	85	85	75	81	81.8	A-	1
17	19030234048	AVISSA AURYN WIJAYANTI	2019	100%	85	85	75	78	80.9	A-	1
18	19030234050	AHMAD JIHAD HIZBULLAH	2019	100%	85	85	75	83	82.4	A-	1
19	19030234051	RISKY AMALIA	2019	100%	85	85	75	79	81.2	A-	1
20	19030234052	NI NYOMAN TRIYANI DAMAYANTI	2019	100%	85	85	75	83	82.4	A-	1
21	19030234053	SITI ALIHATUS FATIMAH	2019	100%	85	85	75	77	80.6	A-	1
22	19030234054	BROWI NUGROHO	2019	100%	85	85	75	70	78.5	B+	1
23	19030234055	NUR ANISA PUNGKASARI	2019	100%	85	85	75	82	82.1	A-	1
24	19030234056	DZIKRA NASYAYA MAHFUDHAH	2019	100%	85	85	75	81	81.8	A-	1
25	19030234058	NIKE NUR FADILAH	2019	100%	85	85	75	76	80.3	A-	1
	19030234058	NAFISATUZ ZAHRO	2019	100%	85	85	75	78	80.3	A-	1
	19030234061	SHERLY WAHYU ADRIANI	2019	100%	85	85	75	82	82.1	A-	1
	19030234064	FADLURACHMAN FAIZAL FACHRIRAKARSIE	2019	100%	85	85	75	75	80	A-	1
	19030234066	M. FAJRUL FALAH	2019	100%	85	85	75	75	80	A-	1
	19030234067	HANIDA FEBRIANTI DWI LESTARI	2019	100%	85	85	75	77	80.6	A-	1
	19030234068	WIDYANA KURNIA	2019	93.33%	80	78	75	77	77.5	B+	1
	19030234069	DEFI AYUNDA	2019	100%	85	85	75	79	81.2	A-	1
	19030234070	NAFISATUS ZAKIYAH	2019	100%	85	85	75	80	81.5	A-	1

D.3.3 Percentage of PLO achievements of Quantum Chemistry at Academic Year 2019/2020

Lecture Code Departm	ent		PLO ASSESSMENT : Quantum Chemistry : 4720103095 : Chemistry Department : 101							
Total of	Student									
	PLO-1	PLO-2	PLO-3	PLO-4	PLO-5	PLO-6	PLO-7	PLO-8		
EXELENCE	12%							365		
GOOD	85%							619		
SATISFY	0%							19		
FALSE	3%							25		
	100%	0%	0%	0%	0%	0%	0%	100		
100% 90% 80% 70% 60% 40% 30% 20%										
0%	PLO-1			LO-4 PLC	D-5 PLO SFY <mark>=</mark> FALSE	-6 PLO-7	7 PLO-8			