MODULE HANDBOOK

Module Name	Thermodynamics of Chemistry	
Module level	Bachelor	
Abbreviation, if applicable	3074213030	
Sub-heading, if applicable	-	
Course included in the	-	
module, if applicable		
Semester/term	3 rd /Second Year	
Module coordinator(s)	Dian Novita, ST., M.Pd.	
Lecturer(s)	Prof. Dr. Harun Nasrudin, M.Pd.	
	Findiyani Ernawati Asih, S.Pd., M.Pd.	
Language	Indonesian	
Classification within the curriculum	Compulsory Course	
Teaching format/class	3 hours lecturers (50 min per hours)	
hours per week during the		
semester:		
Workload:	3 x 50 minutes lectures, 3 x 60 minutes structured activity,	
	3 x 60 minutes individual activity, 14 weeks per semester,	
	119 total hours per semester ~ 4.77 ECTS**	
Credit points:	3 CU x 1.59 = 4.77 ECTS	
Prerequisites course(s):	-	
Targeted learning outcomes:	 Understand the basic principles of thermodynamics and their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium Able to solve science and technology problems in the general field of chemistry and in a simple scope such as through the application of knowledge of the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium, and the application of relevant technologies Having the ability to take advantage of ICT-based learning resources and learning media in understanding energetic concepts. Make decisions about the relationship between basic 	

results, and the existence of chemistry in everydalife. 5. Demonstrate an attitude of responsibility for work in their field of expertise independently. Content: 1. Ideal gas properties and real gas properties 2. Basic understanding and concepts of thermodynamics 3. The first law of thermodynamics. 4. Enthalpy function, enthalpy change and heat capacity. 5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics. 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in the gas phase 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		chemical concepts and	laboratory activities, research
5. Demonstrate an attitude of responsibility for work in their field of expertise independently. Content: 1. Ideal gas properties and real gas properties 2. Basic understanding and concepts of thermodynamics 3. The first law of thermodynamics. 4. Enthalpy function, enthalpy change and heat capacity. 5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics. 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		results, and the existe	nce of chemistry in everyday
their field of expertise independently. Content: 1. Ideal gas properties and real gas properties 2. Basic understanding and concepts of thermodynamics 3. The first law of thermodynamics. 4. Enthalpy function, enthalpy change and heat capacity. 5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics. 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		life.	
Content: 1. Ideal gas properties and real gas properties 2. Basic understanding and concepts of thermodynamics 3. The first law of thermodynamics 4. Enthalpy function, enthalpy change and heat capacity. 5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics 6. The first law of thermodynamics 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions 20. Thermodynamics of electrochemical cells 20. Thermodynamics 20. The			- · · · · · · · · · · · · · · · · · · ·
2. Basic understanding and concepts of thermodynamics 3. The first law of thermodynamics. 4. Enthalpy function, enthalpy change and heat capacity. 5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics. 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass i they obtain at least 40% of maximum final grade. The fina grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		-	ž v
3. The first law of thermodynamics. 4. Enthalpy function, enthalpy change and heat capacity. 5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics. 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in the yobtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.	Content:		
4. Enthalpy function, enthalpy change and heat capacity. 5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics. 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			
5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics. 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			•
6. The first law of thermodynamics. 7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		1	
7. Enthalpy function, enthalpy change and heat capacity. 8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass i they obtain at least 40% of maximum final grade. The fina grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		_	
8. Carnot loop process 9. Second law of thermodynamics 10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass i they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			-
10. The change in entropy in a closed system and 11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		1	
11. Third law of thermodynamics 12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		9. Second law of thermody	ynamics
12. Helmholtz free energy function 13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 20% Final semester test 30% Media: Computer, LCD, White board Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		10. The change in entropy i	n a closed system and
13. Gibbs free energy function 14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass i they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Participation Participation Participation Participation Participation Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		1	
14. Fundamental equations and Maxwell's relationships 15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			
15. Chemical potential of open systems in mixtures 16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			
16. Equilibrium in the gas phase 17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			
17. Equilibrium in chemical reactions 18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass it they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			
18. Shifting equilibrium 19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass it they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		1	
19. Thermodynamics of solutions. 20. Thermodynamics of electrochemical cells Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		<u> </u>	
Study / exam achievements: Study / exam achievements: Students are considered to complete the course and pass in they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation Participation Assignment Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			utions.
they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		I =	
grade (NA) is calculated based on the following ratio: Assessment Components Percentage of contribution Participation Assignment Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.	Study / exam achievements:		-
Assessment Components Percentage of contribution Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		l = =	<u> </u>
Participation 20% Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.			
Assignment 30% Mid-semester test 20% Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		Assessment Components	Percentage of contribution
Mid-semester test Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		Participation	20%
Final semester test 30% Media: Computer, LCD, White board Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		Assignment	30%
Media:Computer, LCD, White boardLearning MethodsIndividuals assignment, group assignment, discussion, presentation, and practicumLiterature:1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		Mid-semester test	20%
Learning Methods Individuals assignment, group assignment, discussion, presentation, and practicum Literature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.		Final semester test	30%
Diterature: 1. Atkins, PW. 1996. Physical Chemistry. Oxford: ELBS Oxford University Press.	Media:	Computer, LCD, White board	
Literature: 1. Atkins, PW. 1996. <i>Physical Chemistry</i> . Oxford: ELBS Oxford University Press.	Learning Methods		assignment, discussion,
Oxford University Press.		•	
	Literature:	1	•
0 A C 1.1.1.1.1		•	
2. Argon Sembiring, 2000, <i>Kimia Fisika I</i> , Universitas Terbuka.			, K <i>imia Fisika I</i> , Universitas
3. Bahl, BS. 2002. Essential of Physical Chemistry. New			al of Physical Chamistry New
Delhi: S.Chand and Company Ltd.			•
4. Levine, I.N., 2005, <i>Physical Chemistry</i> , 4 th edition,			± •
Singapore, McGraw-Hill			

	*1 CU in learning process = three periods consist of: (a)
Notes:	scheduled instruction in a classroom or laboratory (50
	minutes); (b) structured activity (60 minutes); and (c)
	individual activity (60 minutes) according to the Regulation
	of Indonesia Ministry of Research, Technology, and Higher
	Education No. 44 Year 2015 jo. The Regulation of Indonesia
	Ministry of Research, Technology, and Higher Education No.
	50 Year 2018.
	**1 CU = 1,59 ECTS according to Rector Decree Of
	Universitas Negeri Surabaya No. 598/Un38/Hk/Ak/2019