PORTFOLIO ORGANIC SYNTHESIS

ACADEMIC YEAR 2019/2020 EVEN SEMESTER

Course Coordinator: Prof. Dr. Suyatno, M.Si.

Teaching Team: Prof. Dr. Suyatno, M.Si. Prof. Dr. Tukiran, M.Si.

CHEMISTRY DEPARTMENT FACULTY OF MATHEMATICS AND SCIENCES UNIVERSITAS NEGERI SURABAYA

Α.	SEMESTER LEARNING ACTIVITY PLAN	3
	A.1. COURSE IDENTITY	3
	A.2. COURSE TOPIC	4
	A.3. COURSE PROGRAM	5
	A.4. MAPPING OF LEARNING OUTCOMES – COURSE OUTCOMES	14
	A.4.1. The Expected Program Learning Outcomes (PLO) of	
	Undergraduate Program of Chemistry (UPC) 14	
	A4.2. The Education Program Objectives (PEOs) of Career Develpoment	14
	A4.3. Mapping of Program Learning Outcomes (PLO) – Education	
	Program Objectives (PEOs)	14
В.	COURSE ASSESSMENT	14
	B.1. ASESSMENT RUBRIC	14
	B.2. ASSESSMENT SYSTEM	14
C.	COURSE DEVELOPMENT	15
	C.1. ACADEMIC YEAR 2019/2020 RESULT	15
	C.2. PROBLEM ANALYSIS	15
	C.3. SOLUTIVE STRATEGY	16
D.	APPENDICS	
	D.1. DOCUMENT OF COURSE ACTIVITY	16
	D.1.1. Lecture's journal and student's attendance form siakadu.uneca.ac.id	16
	D.1.2. Example recap of student attendance at Career Development courses	17
	D.2. SAMPLE OF STUDENT WORK	18
	D.2.1. Sample of Test Paper	18
	D.2.2. Sample of Student's Work	21
	D.3. RECAPITULATION OF ASSESSMENT	23
	D.3.1. Validate Test Item	23
	D.3.2 Evaluation Results of Career Development	24
	D.3.3. Percentage of PLO achievements of Career Development at Academic	
	Year 2019/2020	26

A. SEMESTER LEARNING ACTIVITY PLAN

A.1. COURSE IDETITY

Modul Name	Organic Synthesis
Module Level	Bachelor of Chemistry
Abbreviation, if	4720103165
applicable	
Sub-heading, if	-
applicable	
Course included in the	-
module, if applicable	
Semester/term	6 th / Sixth year
Modul coordinator(s)	Prof. Dr. Suyatno, M.Si. (C1), Prof. Dr. Tukiran, M.Si. (C1)
Lecturer(s)	Prof. Dr. Suyatno, M.Si. (C1), Prof. Dr. Tukiran, M.Si. (C1)
Language	Indonesian Language
Classification within	Compulsory Course
the curriculum	
Teaching format/class	3 hours lectures (50 min / hour)
hours per week during	
the semester	
Workload	3 hours lecture, 3 hours structured activities, 3 hours individual activities, 14
	week a semester, and total 126 hours a semester ~4.77 ECTS *
Credit point	3 CU = 3 x 1.59 = 4.77 ECTS
Requirement	Monofunctional Organic Chemistry and Polyfunctional Organic Chemistry
Learning Outcomes	General Competence (knowledge):
	Student can conclude functionalitation of functional group, functional group
	interconvertion, formation of carbon-carbon bond and carbon-heteroatom
	bond, target molecule, sinton and disconection approach, syntesis strategy,
	protective group, chemoselective and stereoselective reaction.
	Spesific Competence :
	At the end of the lecture, students can conclude functionalitation of
	functional group, functional group interconvertion, formation of
	carbon-carbon bond and carbon-heteroatom bond, target molecule, sinton
	and disconection approach, syntesis strategy, protective group,
Content	Course materials discuss the understanding of functionalitation of functional
Content	group functional group interconvertion formation of carbon-carbon bond
	and carbon-beteroatom bond target molecule sinton and disconnection
	approach syntesis strategy protective group chemoselective and
	stereoselective reaction
Study/exam	Students are considered to be competent and pass if at least get 55
achievements	
	Final score is calculated as follows: 20% Participation + 30% Assignment +
	20% Midle Exam + 30% Final Exam

	middle exam (UTS)& 30% final exam (UAS)
	Tableindex of graduation
	• 0 - 39,999 E,
	• 40 - 54,999 D,
	• 55 - 59,999 C,
	• 60 - 64,999 C+,
	• 65 - 69,999 B-,
	• 70 - 74,999 B,
	• 75 - 79,999 B+,
	• 80 – 84,999 A-,
	• 85 – 100, A
Forms of media	Computer, LCD, White board
Learning Methods	Lectures, discussion, problem solving, assignment
Literatur	1. Carruthers, W. & Coldam, I. (2004). Modern Methods of Organic
	Synthesis. 4 th Ed. New York: Cambridge University Press.
	2. Fessenden, R.J. dan Fessenden, J.S. (1998). Kimia Organik. Jilid 1 dan 2.
	Penerjemah AH Pudjaatmaka. Jakarta: Erlangga.
	3. Michael B. Smith, M.B. & March, J. (2007). March's Advanced Organic
	<i>Chemistry, Reaction, Mechanism, and Structure,</i> 6 th ed. New Jersey: Jonh
	Wiley and Son, Inc.
	4. Solomon, T.W.G. & Fryhle, C.B. (2011). Organic Chemistry. New York: John
	Wiley & Sons, Inc.
	5. Tukiran dan Suyatno (2018). Sintesis Kimia Organik. Surabaya: Unesa
	University Press.
	6. Warren, S. & Wyatt, P. (2008). Organic Synthesis: the Disconnection
	Approach. 2 nd Ed. London: John Wiley and Sons, In
Note	This course is divided into two parallel classes with the materials and
	ingredients but given the same test in the same time with same lecturers.
	* lotal ECIS = {{total hours workload x 50 min } / 60 min } / 25 hours
	Each ECTS is equals with 25 hours

A.2. COURSE TOPIC

This course examines functionalitation of functional group, functional group interconvertion, formation of carbon-carbon bond and carbon-heteroatom bond, target molecule, sinton and disconection approach, syntesis strategy, protective group, chemoselective and stereoselective reaction..

A.3. COURSE PROGRAM

UNIVERSITAS NEGERI SURABAYA FACULTY MATHEMATICS AND NATUARAL SCIENCES UNDERGRADUATE PROGRAM OF CHEMISTRY

Documen Code

LESSON PLAN CREDIT (SKS) COURSE CODE SEMESTER COMPILATION COURSE CLASSIFICATION DATE **Organic Synthesis** 4720103165 **Compulsory Course** T = 3 P = 0 6 21 June 2021 OTORISASI Lesson Plan Developer **Course Coordinator Coordinator of Study Program** Undergraduate Program of Chemistry Dr. Nuniek Herdyastuti, M.Si. Dr. Amaria, M.Si. Prof. Dr. Suyatno, M.Si. Learning Outcomes **Program Learning Outcomes (PLO)** PLO-1 Mastering the concepts of structure, dynamics and energy, as well as the basic principles of separation, analysis, synthesis and characterization of micromolecular compounds and their applications PLO-5 Able to apply logical, critical, systematic and innovative thinking in the context of the development or implementation of science and technology by observe and applying the value of humanities in accordance with the field of chemistry in solving problems Course Learning Outcomes (CLO)

	CLO	Able design the synthesis of organic compounds using disconection approach by applying functionalitation of functional					
		group, functional group interconvertion, formation of carbon-carbon bond and carbon-heteroatom bond, protective					
		group, chemoselective and stereoselective reaction					
	The Final abi	ility of each learning stage (Sub-CLO)					
	Sub-CLO1	Understand the meaning, use, principles of organic chemical synthesis					
	Sub-CLO2	Understand the types of organic reactions, functional group functionalization processes, functional group interconversion					
	Sub-CLO3	derstand about the types of organic reactions for the formation of carbon skeletons					
	Sub-CLO4	Understand the basic principles in designing the synthesis of organic compounds					
	Sub-CLO5	Understand the synthesis strategy through the disconnection of carbon-heteroatom bonds					
	Sub-CLO6	Understand the synthesis strategy through the disconnection of carbon-carbon bonds					
	Sub-CLO7	Understand the synthesis strategy through the disconnection of aromatic compounds					
	Sub-CLO8	Understand about Definition, selection of protective groups and application of protective groups in organic synthesis					
	Sub-CLO9	Understand about chemoselectivity and stereoselectivity in organic synthesis					
Desription of Course	The study of	functionalitation of functional group, functional group interconvertion, formation of carbon-carbon bond and					
	carbon-heter	n-heteroatom bond, target molecule, sinton and disconection approach, syntesis strategy, protective group, chemoselective and					
	stereoselecti	ve reaction.					
Course material	1. The mear 2. The types	ning, use, principles of organic chemical synthesis of organic reactions, functional group functionalization processes, functional group interconversion					

		3. The types of organic reactions for the formation of carbon skeletons						
		4. The basic principles in designing the synthesis of organic compounds						
		5. The synthesis strategy through the disconnection of carbon-heteroatom bonds						
		6. The synth	lesis strategy throu	gn the disconnection of	carbon-carbon bonds			
		7. The syntr	iesis strategy throu	gn the disconnection of	aromatic compounds			
		8. Protective	e groups in organic	synthesis	th :-			
Defense		9. Chemosel	ectivity and stereos	selectivity in organic syn	thesis			
References Main References :								
		1. Carruthe	ers, W. & Coldam, I	. (2004). Modern Metho	ods of Organic Synthesis. 4 th	Ed. New York: Cambrid	ge University Press.	
		2. Michael	B. Smith, M.B. & M	March, J. (2007). <i>March</i>	n's Advanced Organic Chemi	stry, Reaction, Mechai	nism, and Structure,	6 th ed. New
		Jersey: J	onh Wiley and Son	, Inc.				
		3. Tukiran	Tukiran dan Suyatno (2018). Sintesis Kimia Organik. Surabaya: Unesa University Press.					
		<u>4. Warren, S. & Wyatt, P.</u> (2008). Organic Synthesis: the Disconnection Approach. 2 nd Ed. London: John Wiley and Sons, Inc.						
Supportin			eferences :					
5. Fessenden, R.J. dan Fessenden			den, J.S. (1998). <i>Kimia O</i>	rganik. Jilid 1 dan 2. Penerje	mah AH Pudjaatmaka.	Jakarta: Erlangga.		
		6. Solomor	n, T.W.G. & Fryhle, O	C.B. (2011). Organic Che	<i>mistry</i> . New York: John Wiley	/ & Sons, Inc.		
Lecture	er	1. Prof. Dr. Suyatno, M.Si.						
		2. Prof. Dr. Tukiran, M.Si.						
Prereq	uisite Course	Monofuction	al Organik Compou	nd and Polyfunctional o	f Organic Compound			
					Form of Lea	rning,		Weight
The Final ability of each Evaluation Learning Models/ Methods Assignment				nods. Assignment	Laerning	score of		
Nieetin learning stage Materi						Materials	evaluati-	
g	(Sub-C	LO)			[Time Estimate]		[Reference]	on
			Indicator	Criteria & Form	Offline	Online		(%)
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)

1	Understand the meaning, use, principles of organic chemical synthesis	Explain the meaning, use, principles of organic chemical synthesis	Criteria: - The suitability of the answers with the scoring rubric for each indicator Evaluation type: Essay test	Form of learning: Lecture Learning model: Direct instruction	-	The meaning, use, principles of organic chemical synthesis (Reference 3)	10
2	Understand the types of organic reactions, functional group functionalization processes, functional group interconversion	Explain the types of organic reactions, functional group functionalizatio n processes, functional group interconversion	Criteria: - The suitability of the answers with the scoring rubric for each indicator Evaluation type: Essay test	Form of learning: Lecture Learning model: Problem based learning	-	The types of organic reactions, functional group functionalization processes, functional group interconversion (Reference 2, 3, and 5)	10
3	Understand about the types of organic reactions for the formation of carbon skeletons	Explain the types of organic reactions for the formation of carbon skeletons	Criteria: - The suitability of the answers with the scoring rubric for each indicator Evaluation type: Essay test	Form of learning: Lecture Learning model: Problem based learning		The types of organic reactions for the formation of carbon skeletons (Reference 1, 3 and 4)	10
4	Understand the basic principles in designing the	Explain the basic principles in designing the	Criteria: - The suitability of the answers with	Form of learning: Lecture		The basic principles in designing the	10

	synthesis of organic compounds	synthesis of organic compounds	the scoring rubric for each indicator Evaluation type: Essay test	Learning model: Problem based learning		synthesis of organic (Reference 1, 3 and 4)	
5	Understand the synthesis strategy through the disconnection of carbon-heteroatom bonds	Explain the synthesis strategy through the disconnection of carbon-heteroa tom bonds	Criteria: - The suitability of the answers with the scoring rubric for each indicator Evaluation type: Essay test	Form of learning: Lecture Learning model: Problem based learning		The synthesis strategy through the disconnection of carbon-heteroato m bonds (Reference 1, 3 and 4)	15
6-7	Understand the synthesis strategy through the disconnection of carbon-carbon bonds	Explain the synthesis strategy through the disconnection of carbon-carbon bonds	Criteria: - The suitability of the answers with the scoring rubric for each indicator Evaluation type: Essay test	Form of learning: Lecture Learning model: Problem based learning	-	The synthesis strategy through the disconnection of carbon-heteroato m bonds (Reference 1, 3 and 4)	15
8	The Midterm exam						
9-11	Understand the synthesis strategy through the disconnection of aromatic compounds	Explain the synthesis strategy through the disconnection	Criteria: - The suitability of the answers with the scoring rubric for each indicator	Form of learning: Lecture Learning model: Problem based learning	-	The synthesis strategy through the disconnection of aromatic compounds	10

		of aromatic compounds	Evaluation type: Essay test		(Re and	eference 3, 4, nd 6)	
12-13	Understand about Definition, selection of protective groups and application of protective groups in organic synthesis	Explain definition, selection of protective groups and application of protective groups in organic synthesis	Criteria: - The suitability of the answers with the scoring rubric for each indicator - Evaluation type: Essay test	Form of learning: Lecture Learning model: Problem based learning	- Pro in syr (Re and	rotective groups organic anthesis Reference 1,3, 4, and 6)	10
14-15	Understand about chemoselectivity and stereoselectivity in organic synthesis	Explain the chemoselectivit y and stereoselectivit y in organic synthesis	Criteria: - The suitability of the answers with the scoring rubric for each indicator Evaluation type: Essay test	Form of learning: Lecture Learning model: Problem based learning	- Chi and ste in syr (Re 4, a	nemoselectivity nd ereoselectivity organic rnthesis teference 1, 3, and 5)	10
16	16 The Final Exam					100	

A.4. MAPPING OF LEARNING OUTCOMES – COURSE OUTCOMES

ASPECTS	PLO	CODE
	1. Able to master the concepts of structure, dynamics and energy, as well as the basic principles of separation, analysis, synthesis, and characterization of micromolecular compounds and their applications	KNO-1
KNUWLEDGE	2. Able to master the basic principles and knowledge of how to operationalize instruments for the analysis and characterization of compounds, as well as utilizing ICT for modeling more specific molecules	KNO-2
SKIL	3. Able to master the principles of Occupational Health and Safety, manage laboratories and use their equipment, and operate instrumental of chemistry	SKI-1
SKIL	4. Able to design an activity to solve problems by implementing capabilities in the field of chemistry that refers to ecopreunership	SKI-2
COMPETENCIES	5. Able to apply logical, critical, systematic and innovative thinking in the context of the development or implementation of science and technology by observe and applying the value of humanities in accordance with the field of chemistry in solving problems	COM-1
	6. Able to master the basics of the scientific method, designing and conducting research, compiling scientific reports and communicating them both verbally and in writing by utilizing information and communication technology	COM-2
ATTITUDE AND SOCIAL	7. Able to build teamwork and have entrepreneurial skills that are environmental perspective, and make the right, honest and responsible decisions in solving problems of chemistry and have social sensitivity as a obligation of citizens and religious communities	SOC-1
	8. Able to adapt to various developments in chemistry, continue to develop and learn throughout long-life education, both formal and nonformal	SOC-2

A.4.1. The Expected Program Learning Outcomes (PLO) of Undergraduate Program of Chemistry (UPC)

A4.2. The Education Program Objectives (PEOs) of Organic Synthesis

- PEO 1. Able to master the fundamental knowledge of chemistry, the basic principles of chemical instruments, laboratory organizations, Occupational Health and Safety, scientific methods, digital literacy to solve a problem in their profession/workplace (professional).
- PEO 2. Able to improve higher-order thinking skills by analyzing, evaluating data, and being creative; communicating ideas, able to take the right initiatives, be good decision-makers, and have the ability to lead in relevant field workgroups
- PEO 3.Able to develop and apply chemistry concepts along with the progress of science and technology as well as humanities values

A4.3. Mapping of Program Learning Outcomes (PLO) – Education Program Objectives (PEOs)

	PLO 1 (KNO-1)	PLO 5 (COM-1)
PEO 1	\checkmark	
PEO 2		\checkmark
PEO 3	\checkmark	\checkmark

B. COURSE ASSESSMENT

B.1. Assessment Rubric

Cognitive Criteria

- 1. The ability to give answers correctly
- 2. The ability to provide argumentation according to theory
- 3. The ability to provide systematic explanations
- 4. The ability to solve problems comprehensively

B.2. Assessment System

Final Assessment Course:

Group/Individuals Assignment	: 30%
Midterm examination	: 30%
Final examination	: 40%

Distribution of the weight of the ability of the test item

	PLO 1 (KNO-1)	PLO 5 (COM-1)	Total
Group/Individuals Assignment	70%	30%	100%
Midterm examination	80%	20%	100%
Final examination	80%	20%	100%

Success Criteria of Program Learning Outcomes (PLO)

Excellence	≥ 80
Good	\geq 70
Satisfy	≥ 55
Fail	> 0

Final Index	Range
Α	4 (85 ≤-≥ 100)
A ⁻	3,75 (80 ≤-< 85)
B+	3,5 (75 ≤- < 80)
В	3 (70 ≤-< 75)
B-	2,75 (65 ≤-<75)
C+	2,5 (60 ≤-<65)
С	2 (55 ≤-<60)
D	1 (40 ≤-<55)
E	0 (0 ≤-<40)

Final index for undergraduate program defined as follow:

C. COURSE DEVELOPMENT

C.1. Academic Year 2019/2020 even semester

Parameter	\sum of person	Percentage
Number or students taking this subject	59	100%
Number of students who pass at first attempt ($>C^+$)	57	97%
Number of students who pass at first attempt (= C)	0	0%
Number of failed students after remedial (D & E)	2	3%

C.2. Problems Analysis

In 2019/2020 academic year in the Organic Synthesis course, there were 97 % students had passed the examination at the first attempt. At the end of the Semester Examination there is remidial test for two students but they did not take the opportunity given so they failed in this course. Thus as many as 3 percent of students did not succeed in this course and they must take this course in the next semester. The improving learning strategies / methods were required to achieve the better results.

C.3. Solutive Strategy

New teaching and learning methods should be developed for the next academic years, consisting of:

1. There needs to be a group study in understanding the career development, so that students teach each other, and peer tutors occur.

2. Enhance the cooperative skills of students with exchange the methods and models of learning

D. APPENDICES D.1. DOCUMENT OF COURSE ACTIVITY D.1.1. Lecture's journal and student's attendance form siakadu.uneca.ac.id for Chemistry Class-2017

Jika Pes	erta Perkuliahan masih 0 maka pr	sees bitun d lik langu separa dang penera jada pertenuar terabat.					
2h1m	definite:	V Balant					
hone	Institute		ina	hera	DISKN	hera	land
iki (() (Setur(200) Ioan: 22/17/0	Pagengine PAL versikalije ara generalenali i Prospili.	Njelis	3	gia	Ļ	ł
No.	iii 11 Rénari, 2020 Iosan 2010/10	Regionita can mener agga tagi	Ngalari	3	80	1	ł
80	iii 19 Admusi (200 Down: 2010/10	Expension an intervent opp top	Njelovi	3	8 ⁹⁸	ţ.	ł
Xec (S Sferver, SSS bane 2015 In Line state Sport Rober pergia perdan pili perman H.	Refera la registrato	ûeri	3	ga	1	1
'ni	Stars 200 base 20150 bis understar Spervision pergius petalen pila perman H.		ûeri	3	8 th	1	ł
ini.	Ease: 2010 International Systematics International Systematics Percent programmer M.	Server in the Cold of a notest	ûnî	3	ga	1	ł
347	S String 200 base 2015 In underste Spendeder projek problempskipernan H.	Steps (here's Steps elser)	ûeri	20	8 ^{ca}	1	4
ini	States, 200 base: 2010s base: 2010s base: 2010s petalergeligen die begen die ber perglas petalergeligen mit N.	(a hypiner	ûnt	2	ga	1	ł
Xarê	21 Mare, 2020 Desert TURION	1 Initial an ensurgh-menuphakalga koma	Tejahai	2	8 ²⁸	£.	1
ia 13	5 7 April 2000 Doaren Tuckaus	Cilitar program tabilar hospital interpretable layer band (ber band)	Njdril	2	82	ţ.	1
NH.	Stapi, 200 Deam Turkuv	1 Nijiha la maara barang kar Janah Bangh Baara	Nejstani	2	8th	1	Ļ
Na ti	01 April 2000 Dosen Turktur	Appleong	Nejstral	2	gia	£.	1
ns.	Is ipt, 200 Dawn Tufkin	Aquiferant S	Nga ka	2	82	1	ł
81	514,000 Dears Turkey	ursampoonten)	Ngalari	20	82	1	ł
85	0 1216(100 Doen: Tutkan	In any pointing 2	Notes a	2	ger.	1,	Ļ

D.1.2. Example recap of student attendance at Organic Synthesis for Chemistry Class

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA Jl. Lidah Wetan, Surabaya - 60213 Telepon :+6231-99424932 Faksimile :+6231-99424932 e-mail :bakpk@unesa.ac.id

PRESENSI KULIAH Periode 2019/2020 Genap

Mata Kuliah : Sintesis Organik Kelas : 2017A Prodi : S1 Kimia Dosen : Prof. Dr. Suyatno, M.Si. Prof. Dr. Tukiran, M.Si.

									Pert	emua	an Ke							
			1	2	3	4	5	6	7	8	9	10	-11	12	13	14	15	
No	NIM	Nama Mahasiswa	04	-11	18	25	05	10	23	23	31	07	14	21	28	05	12	%
			Feb	Feb	Feb	Feb	Mar	Mar	Mar	Mar	Mar	Apr	Apr	Apr	Apr	May	May	
			20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
1.	15030234008	DHIEMAS FEBRYAN DWI CANDRA	Α	Α	Α	Α	Α	Α	Η	Η	Η	Η	Η	Η	Η	Н	Н	60 %
2.	16030234005	SOFIA MADANI	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	100 %
3.	16030234026	EDLYN AINAYYAH AN NABILAH	Α	Α	Α	Α	Α	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	66.7 %
4.	17030234001	RIZKI AMALIA	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	100 %
5.	17030234003	DEWINTA INTAN LAILY	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	100 %
6.	17030234005	LISTYOWATI	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	100 %
7.	17030234007	ELMA ALFIANTI INDRI LESTARI	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	100 %
0	17020224000	LAILATER WAREHDALL	ш	Ш	ш	Ш	ш	ш	11		Ш	Ш	Ш	Ш	Ш	11	ш	100.0/

D.2. SAMPLE OF STUDENT WORK

D.2.1. Sample of Test Paper

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN Kempunian UNIVERSITAS NEGERI SURABAYA Santaya (2) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 1:+4271-40 JURUSAN KIMIA 1:+4271-40

 SOAL UJIAN TENGAH SEMESTER GENAP 2019/2020

 Mata Ujian
 : Sintesis Kimia Organik

 Jurusan/Fakultas
 : Kimia/ MIPA

 Program/Angkatan
 : Kimia A dan B/2017

 Hari/Tanggal
 : Selasa, 24 Maret 2020

 Waktu
 : 100 menit

 Dosen
 : Prof. Dr. Suyatno, M.Si.

PETUNJUK: Jawablah setiap pertanyaan berikut dengan benar!

1. Tentukan struktur molekul senyawa A s/d M dalam deretan reaksi sintesis berikut!

3OAL UJIAN AKHIR SEMESTER GENAP 2019/2020

Mata Ujian	: Sintesis Kimia Organik
Jurusan/Fakultas	: Kimia / MIPA
Program/Angkatan	: Kimia/2017 (kelas A dan kelas B)
Hari/Tanggal	: Senin/18 Mei 2020
Waktu	: 08.00-09.40
	(100 menit pengerjaan + 20 menit upload jawaban)
Dosen	: Tim
Sifat Ujian	: Open Book/Source

Jawablah Pertanyaan-Pertanyaan di Bawah ini !

 Lakukan retro-sintesis lebih dulu setiap senyawa-senyawa berikut, baru Anda lakukan sintesis dan tunjukkan reagen-reagen yang digunakan dengan jelas dan lengkap!

 Tulis secara garis besar reaksi sintesis untuk pembentukan dari setiap senyawa berikut dari benzena menggunakan pereaksi yang sesuai dan berikan alasannya.
 a.

b.

- 3. Kapan tahapan geseran metil (methyl shift) atau geseran hydrogen (hydrogen shift) terjadi pada reaksi substitusi elektrofilik pada senyawa aromatis dan berikan contohnya.
- 4. Gugus pelindung adalah gugus fungsi yang digunakan untuk melindungi gugus tertentu supaya tidak turut bereaksi dengan menggunakan pereaksi atau pelarut selama proses sintesis.
 - a. Jika senyawa yang akan direaksikan (disebut substrat) memiliki dua gugus hidroksil, apa yang bisa Anda lakukan terkait penggunaan gugus pelindung?Berikan contoh reaksinya dan jelaskan agar dapat dipahami maksudnya.
 - b. Bagaimanakah kalau substrat itu memiliki dua gugus karbonil dalam senyawanya?Apa yang Anda bisa lakukan terkait dengan penggunaan gugus pelindung?Berikan contoh reaksinya untuk memperjelas maksud Anda.

D.2.2. Sample of Student's Work from Chemistry Class-20017

он о

D.3. RECAPITULATION OF ASSESSMENT

D.3.1. Validate Test Item

The test for the end of semester evaluation consists of eight questions in the form of essays which have been analyzed by the lecturer in the Organic Synthesis group. The essay question is validated by paying attention to several aspects, namely the suitability of the problem with indicators, language, content and construct.

D.3.2 .	Evaluation	Results of	of O	D rganic	Synthesis	for	Chemistry	Class
----------------	------------	-------------------	------	-----------------	-----------	-----	-----------	-------

4	Kela	as : 2017A							ide.	97-Q	0		
5	Tah	un Ajaran : 2019)/2020 Genap						80	- <u>19</u>	8N -		
5									78	- 34	<u>eş</u> -		
7	Kete	erangan :							治野	2.3	- 90		
3	1. Ko	omponen nilai	yang diisi hanya : Part,Tugas,UTS dan UAS						Ш6	28-	.X.		
2. Nilai UAS mahasiswa dengan kehadiran dibawah 73.3% (kolom dg warna merah) tidak akan disimpan													
0 3. Jangan merubah apapun di dokumen ini kecuali pada point nomer satu di atas.													
1	4. PF	PTI / BAAK tidak	menerima file nilai untuk diupload. Proses u	pload nilai d	ilakukan oleh	dosen (pengam	pu yang	bersan	gkutan.			
2													
			Name III Lastron		Robert Para	D -1	-	175			11	p.L.	
3	NO	NIIVI	Nama Manasiswa	Angkatan	Kenadiran	Part	Tugas	015	UAS	NA	Hurur	Рака	
4	1	16030234005	SOFIA MADANI	2016	93.33%	50	0	0	83	34.9	E	1	
5	2	16030234026	EDLYN AINAYYAH AN NABILAH	2016	66.67%	0	85	0	85	25.5	E	1	
6	3	17030234001	RIZKI AMALIA	2017	100%	80	88	55	85	78.9	B+	1	
7	4	17030234003	DEWINTA INTAN LAILY	2017	100%	80	83	55	88	78.3	B+	1	
8	5	17030234005	LISTYOWATI	2017	100%	80	83	50	85	76.4	B+	1	
9	6	17030234007	ELMA ALFIANTI INDRI LESTARI	2017	100%	80	83	75	87	82	A-	1	
0	7	17030234009	LAILATUL WAKHIDAH	2017	100%	80	83	55	89	78.6	B+	1	
1	8	17030234011	SHELA INSANUL HIKMAH	2017	100%	80	85	55	82	77 1	R±	1	

								iet.		<u>es</u> -	
Ke	eterangan :							H. 1	10 A	<u>- 40</u>	
1. k	(omponen nilai j	yang diisi hanya : Part, Tugas, UTS dan UAS							е н	× -	
2.1	Nilai UAS maha:	siswa dengan kehadiran dibawah 73.3% (kolo	m dg warna n	nerah) tidak al	kan disi	mpan					
3.	Jangan merubał) apapun di dokumen ini kecuali pada point no	omer satu di	atas.							
4.1	PPTI/BAAK tid	lak menerima file nilai untuk diupload. Prose:	s upload nilai	dilakukan ole	h doser	n pengar	mpu yar	ig bersa	ngkutar	n.	
								-	-		
No	NIM	Nama Mahasis v a	Angkatar	Kehadiran	Part	Tugas	UTS	UAS	NA	Huruf	Paka
	1 17030234002	AMALINA NUB FIDIYAH	2017	100%	60	70	55	84	69.2	B-	1
1	2 17030234004	DEVY PUSPITA SARI	2017	100%	90	90	75	85	85.5	A	1
	3 17030234006	NUR AIDA AMYLIANA	2017	100%	80	70	75	85	77.5	B+	1
- 4	4 17030234008	KUALA VIRIDA VENING	2017	100%	80	90	55	90	81	A-	1
Į	5 17030234010	DICKY DHARMAWAN	2017	100%	75	70	85	80	77	B+	1
- (6 17030234012	DIMAS AYU YULIANTI	2017	100%	90	90	65	85	83.5	A-	1
	7 17030234014	MUKHAMAD ROJIB AMINUDIN	2017	100%	90	90	75	86	85.8	A	1
(8 17030234016	BELA NUR VIDODO	2017	100%	85	90	75	90	86	A	1
	9 17030234018	RIZKA TAZKY AMALIA	2017	100%	90	90	76	83	85.1	A	1
1(0 17030234020	JULIAN SAGUS BRAMASTA	2017	93.33%	80	88	0	88	68.8	B-	1
_											

0

Original data :

PROGRAM STUDI S1 Kimia

Kelas : 2017B

2 DAFTAR NILAI MAHASISWA

5 Tahun Ajaran : 2019/2020 Genap

Mata Kuliah : Penentuan Struktur Molekul

D.3.3. Percentage of PLO achievements of Organic Synthesis at Academic Year 2019/2020 for Chemistry Class

PLO ASSESSMENT

Lecture	: Organic Synthesis
Code	: 4720103165
Department	: Chemistry Department
Total of Student	: 59

	PLO-1	PLO-2	PLO-3	PLO-4	PLO-5	PLO-6	PLO-7	PLO-8
EXELENCE	24%				27%			
GOOD	66%				64%			

SATISFY	8%				7%			
FALSE	2%				2%			
	100%	0%	0%	0%	100%	0%	0%	0%

