

UNIVERSITAS NEGERI SURABAYA FACULTY OF MATHEMATICS AND NATURAL SCIENCE UNDERGRADUATE PROGRAMME OF CHEMISTRY

Document Code

SEMESTER LEARNING ACTIVITY PLAN									
COURSE			CODE	Course Group		Credit Unit		Semester	Date
Quantum Chemistry			3074213020		Compulsory		SCU	2	6 January 2020
AUTHORIZATION			Compiler Coordinator				Head of Study Program		
CHEMISTRY			Prof. Dr. Suyono, M		Prof. Dr. Suyono, M.Pd	1.Pd.		Dr. Amaria, M.Si.	
Learning Outcomes	Program Learning Outco		nes (PLO)						
	PLO1 (KNO-1)	Able to master the concepts of structure, dynamics and energy, as well as the basic principles of separation, anal synthesis, and characterization of micromolecular compounds and their applications						aration, analysis,	
	PLO8 (SOC-2)	Able to adapt to various developments in chemistry, continue to develop and learn throughout long-life education, both formal and nonformal							
	Course Learning Outcomes (CLO)								
	CLO1		can take advantag ding of quantum ch	-	ansformation and vari	ious othe	r learnin	g resources	to support their
	CLO2		Students can master the concepts and basic principles of quantum chemistry which are appropriate for the structure, bonds, and characteristics of various materials in physical chemistry.						
	CLO3	Students are able to make decisions in formulating solutions to quantum chemical problems related to atomic structure, chemical bonds, molecular structure, molecular symmetry, spectroscopy and molecular interactions.							
	CLO4	Students have good morals, ethics and personality in completing quantum chemistry assignments independently or in groups and are responsible for communicating the results.					ts independently		
	CLO4	Students have Ability to integrate the concept of technopreneurship in quantum chemistry							
	Sub CLO	•							

	Sub-CLO1	Students are able to master the achievement targets of quantum chemistry course						
	Sub-CLO2	Students are able to understand the basic principles of quantum chemistry						
	Sub-CLO3	Students are able to apply quantum chemistry on translational motion						
	Sub-CLO4	Students are able to apply quantum chemistry on vibrational motion						
	Sub-CLO5	Students are able to apply quantum chemistry on rotational motion						
	Sub-CLO6	Students are able to determine the structure and spectra of hydrogen atoms						
	Sub-CLO7	Students are able to determine the structure and spectra of complex atoms						
	Sub-CLO9	Students are able to understand valence bond theory or VBT						
	Sub-CLO10	Students are able to understand MOT for diatomic molecules						
	Sub-CLO11	Students are able to understand MOT for polyatomic molecules						
	Sub-CLO12	Students are able to understand the basic principles of molecular symmetry						
	Sub-CLO13	Students are able to apply symmetry and group symmetry of a molecule						
	Sub-CLO14	Students are able to understand the basic principles of molecular spectroscopy						
	Sub-CLO15	Students are able to understand molecules related interactions which with the electrical and interfacial properties of a						
Brief Description of	This course	This course studies quantum chemistry and its application of atomic structure, chemical bonds, molecular structure, properties						
the Course		of matter, molecular symmetry, spectroscopy and molecular interactions. This course is presented in theory, practice, and						
		e engineering through literacy, discussion, and assignments.						
Study Materials:	1. Basic Concepts and Principles of Quantum Chemistry.							
Learning Materials	2. The application of quantum chemistry to translational, vibration and rotation motion							
	3. The application of quantum chemistry to the structure of the hydrogen atom and the atom with many electrons							
	4. Chemical bond theory (Valence bond theory and molecular orbital theory)							
	5. Molecular symmetry							
	6. Molecular spectroscopy7. Molecular interactions							
Reference	Main :	ar interactions						
Reference		P., Paula, J.d., and Keeler, J. 2018. Atkin's Physical Chemistry, 11th edition. New York: Oxford University Press.						
	2. Levine, Ira N. 2014. Quantum chemistry, 7th edition. New York: Pearson Education, Inc							
	Additional :	pr. P. G. 2008. Dhysical Chemistry. 3th edition. Lenden: Elequier Inc.						
	1. Mortimer, R.G. 2008, Physical Chemistry, 3th edition, London: Elsevier Inc.							
Lecturer	Dr. IGM Sa	njaya, M.Si., Samik, S.Si., M.Si., and Findiyani E. Asih, S.Pd., M.Pd.						

Prereq	uisite courses Basic Chen	nistry I					
Meetin	The final ability of each activity	Assessment		Learnin	ing Forms, g Methods, Assignment	Reference	Rating Weight
Ū		Indicator	Criteria & Form	Offline	online		(%)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Mastering the achievement targets of quantum chemistry course	Mentioning the achievements of quantum chemistry course	Introduction and contract of quantum chemistry		Presentation and discussion	RPS KF I	0
			Essay Test				
2	Understanding the basic principles of quantum chemistry	Distinguishing Schrodinger equations based on dependent and independent time	The basic principles of Quantum Chemistry		Presentation and discussion	Ref. 1 hal 249 - 287 Ref. 2	10
			Essay Test				
3	Applying quantum chemistry on translational motion	Defining function waves of particle, energy and density of particles in squares of 1, 2, and 3 dimensions	Application of translational motion Essay Test		Presentation and discussion	Ref. 1 hal 288 - 300 Ref. 2	5
4	Applying quantum chemistry on vibrational motion	Determining the wave function of the particle and the energy levels of the vibrational motion	Application of vibrational motion Essay Test		Presentation and discussion	Ref. 1 hal 300 - 306 Ref. 2	5
5	Applying quantum chemistry on rotational motion	Determining the wave function of the particle and the rotational energy levels	Application of rotational motion Essay Test		Presentation and discussion	Ref. 1 hal 306 - 323 Ref. 2	5

6	Determining the structure and spectra of hydrogen atoms Determining the structure and spectra of complex atoms	Determining the structure, shape and energy of atomic orbitals, and hydrogen spectra Analyzing orbital approximation and term symbol	structure and spectra of Hydrogen atom Essay Test structure and spectra of Complex atom	Presentation and discussion Presentation and discussion	Ref I hal 324 – 338 Ref. 2 Ref I hal 338 – 370	10
8			Essay Test Mid-Term Exam			
9	Understanding valence bond theory or VBT	Explaining VBT of diatomic and polyatomic molecules	Valence bond theory Essay Test	Presentation and discussion	Ref I hal 371 - 377	5
10	Understanding MOT for diatomic molecules	Writing the electron configuration of a diatomic molecule	MOT for diatomic molecules Essay Test	Presentation and discussion	Ref I hal 378 – 395	5
11	Understanding MOT for polyatomic molecules	Describing the electronic structure of a polyatomic molecules	MOT for polyatomic molecules Essay Test	Presentation and discussion	Ref I hal 395 – 401	10
12	Understanding the basic principles of molecular symmetry	Defining elements and operations on molecular symmetry	The basic principles of molecular symmetry Essay Test	Presentation and discussion	Ref I hal 409 – 426	10
13	Applying symmetry and group symmetry of a molecule	Analyzing the group symmetry of a molecule	Symmetry and group symmetry of a molecule	Presentation and discussion	Ref I hal 427 – 444	10

			Essay Test				
14	Understanding the basic principles of molecular spectroscopy	Distinguishing between translational, vibrational and rotational spectra	The basic principles of molecular spectroscopy Essay Test		Presentation and discussion	Ref I hal 445 – 563	5
15	Understanding molecules related interactions which with the electrical and interfacial properties of a matter	Analyzing the molecular interactions which produce the electrical and interfacial properties of a material	The molecular interactions which produce the electrical and interfacial properties of a material Essay Test		Presentation and discussion	Ref I hal 340 – 370	10
16	16 Final Exams						