MODULE PORTFOLIO

EVEN SEMESTER ACADEMIC YEAR 2019/2020

MODULE NAME	$:$	Multivariable Calculus	
MODULE CODE	$:$	4420104057	LECTURER:
CLASS	$: 2018$	$:$	Budi Priyo Prawoto, M.Si

2. Mid-term exam

\checkmark Mid-term exam is held at the 8th meeting.Mid-term exam is held in class with 100 minutes of implementation time according to the class schedule.Mid-term exam is conducted to see the achievements of the PLO and CLO that correspond to the characteristics of Transformational Geometry courses.

3. Final Exam

The final exam is held at the 16th meeting.The final exam is is held in class with 100 minutes of implementation time according to the class schedule.The final exam is conducted to see the achievements of the PLO and CLO which correspond to the characteristics of Transformational Geometry courses.| Multivariable
 Calculus | KNO-1 | SKI-1 | SKI-2 | SKI-4 | COM-2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CLO-1 | Assignment,
 mid-term test,
 final test | | | | |
| CLO-2 | | Assignment,
 mid-term test,
 final test | | Assignment,
 mid-term test,
 final test | |
| CLO-3 | | | | Assignment | |
| CLO-4 | | | | Assignment | |

			calculus of multivariable function, and integral calculus of multivariable function with skor at least 80.	multivariable function with skor at least 70 and less than 80.	multivariable function with skor at least 55 and less than 70	multivariable function with skor less than 55.
	SKI-4	Implementing simple mathematical procedures in computer programs	Able to implement concept and properties of vector, vector valued function, real valued multivariable vector, differential calculus of multivariable function, and integral calculus of multivariable function for making a simple computer problem in order to solve problems with skor at least 80.	Able to implement concept and properties of vector, vector valued function, real valued multivariable vector, differential calculus of multivariable function, and integral calculus of multivariable function for making a simple computer problem in order to solve problems with skor at least 70 and less than 80.	Able to implement concept and properties of vector, vector valued function, real valued multivariable vector, differential calculus of multivariable function, and integral calculus of multivariable function for making a simple computer problem in order to solve problems with skor at least 55 and less than 70	Able to implement concept and properties of vector, vector valued function, real valued multivariable vector, differential calculus of multivariable function, and integral calculus of multivariable function for making a simple computer problem in order to solve problemswith skor less than 55.
	COM-2	Generating ideas used for completing mathematical tasks and to communicate them either in	Generalize the ideas used to complete tasks related to the concept of vector, vector valued function, real valued multivariable vector,	Generalize the ideas used to complete tasks related to the concept of vector, vector valued function, real valued multivariable vector, differential calculus of multivariable	Generalize the ideas used to complete tasks related to the concept of vector, vector valued function, real valued multivariable vector, differential calculus of	Generalize the ideas used to complete tasks related to the concept of vector, vector valued function, real valued multivariable vector, differential calculus of

CLASSICAL VALUE OF PLO						
	KNO-1	SKI-1	SKI-2	SKI-4	COM-2	
Max	93.77	93.77	93.83	100.00	100.00	
Rat	74.69	74.69	73.53	88.72	88.72	
Min	56.92	56.92	56.67	60.00	60.00	

	ACHIEVEMENT NUMBER OF PLO				
	KNO-1	SKI-1	SKI-2	SKI-4	COM-2
E	20.00	20.00	18.00	63.00	63.00
G	21.00	21.00	22.00	0.00	0.00
S	24.00	24.00	25.00	2.00	2.00
F	0.00	0.00	0.00	0.00	0.00
	65	65	65	65	65

	ACHIEVEMENT PERCENTAGE OF PLO (\%)				
	KNO-1	SKI-1	SKI-2	SKI-4	COM-2
E	30.77	30.77	27.69	96.92	96.92
G	32.31	32.31	33.85	0.00	0.00
S	36.92	36.92	38.46	3.08	3.08

PERFORMANCE ANALYSIS		
RECOMMENDATIO N FOR FUTURE LEARNING	$:$Overall, PLO's achievements in this course have been very good. However, in order to maintain and also improve PLO achievements, several things are recommended: 1. Motivating students to be able to communicate well with all members of the class where the student repeats the course so 2. Increase practice questions in the next lecture, through assignments.	
RECOMMEDATION FOR INSTITUTION	$:$	-

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI

Management
System ISO 9001:2015

Course / Code : Multivariable Calculus
Lecturer : Rudianto Artiono, M.Si
Program/ Class : S1/2020E
Date and Time : Tuesday, October 14, 2021
Duration : 100 Minutes
Type : Closed

1. Write your answers on a sheet of paper with identification on each sheet.
2. Avoid using a pencil in writing answers.
3. Photograph/scan your answer sheet so that your answers can be read properly.
4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: NIM_NAMA.
5. Work independently without any resources but yourself
6. Please determine whether these statements are correct or wrong. Give an argument for your answer.
a. The zero vector is always perpendicular and parallel to any vector space.
b. For vectors \mathbf{u} and \mathbf{v}, if $\mathbf{u} \cdot \mathbf{v}=0$ and $\mathbf{u} \cdot \mathbf{w}=0$, then \mathbf{v} is parallel to \mathbf{w}.
(Score 20)
7. Find the unit tangent vector (\boldsymbol{T}), unit normal vector (\boldsymbol{N}), and curvature ($\boldsymbol{\kappa}$) of the following curve $r(t)=(t-\sin t) \boldsymbol{i}+(t-\cos t) \boldsymbol{j}+e-t \boldsymbol{k}$ at $t=0$
8. Find the value

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+y^{4}}
$$

if exist.
(Score 20)
4. Define the partial derivative from $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ on $u=1$ and $v=-2$ if known $z=\ln q$ and $q=\sqrt{v+3} \tan ^{-1} u$
(Score 20)
5. Find the directional derivative of $f(x, y, z)=x^{3} y-x^{2} z^{2}$ at the point $(-2,1,3)$ in the vector direction $i-2 j+2 k$.
(Score 20)

BLUE PRINT OF ODD SEMESTER MIDTERM EXAMINATION

Examination Subjects
Lectures
Program
: Multivariable Calculus
: Team
: Mathematics

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Solve problems related to vectors in planes and spaces (CLO-3)	Please determine whether these statements are correct or wrong. Give an argument for your answer. a. The zero vector is always perpendicular and parallel to any vector space. b. For vectors \mathbf{u} and \mathbf{v}, if $\mathbf{u} \cdot \mathbf{v}$ $=0$ and $\mathbf{u} \cdot \mathbf{w}=0$, then \mathbf{v} is parallel to \mathbf{w}.	- Find the definition of zero vector - Find the definition of perpendicular between two vectors - Find the definition of parallel between two vectors - Find the definition of dot product - Find the meaning of $\mathbf{u} \cdot \mathbf{v}=0$ - Find the meaning of $\mathbf{u} \cdot \mathbf{w}=0$ - Determine whether \mathbf{v} is parallel to \mathbf{w}	C4	20
2.	Calculating vector functions, arc length, curvature (CLO-6)	Find the unit tangent vector (\boldsymbol{T}), unit normal vector (\boldsymbol{N}), and curvature (к) of the following curve $r(t)=$ $(t-\sin t) \boldsymbol{i}+(t-\cos t) \boldsymbol{j}+$ $e-t \boldsymbol{k}$ at $t=0$	- Find the definition of the unit tangent vector (\boldsymbol{T}) - Find the definition of the unit normal vector (\boldsymbol{N}) - Find the definition of the curvature ($\mathbf{\kappa}$)	C4	20
3.	Formulate the concept of limit and continuity of function with two	Find the value $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+y^{4}}$ if exist.	- Find the definition of existence limit - Find the the value of limit	C5	20

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

	$\begin{array}{\|l} \hline \text { variables and their } \\ \text { properties (CLO-2) } \end{array}$				
4	Using the chain rule to determine the partial derivative (CLO-3)	Define the partial derivative from $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ on $u=1$ and $v=-2$ if known $z=\ln q$ and $q=\sqrt{v+3} \tan ^{-1} u$	- Find the value of $\frac{\partial z}{\partial u}$ from given function - Substitute $u=1$ - Find the value $\frac{\partial z}{\partial v}$ from given function - Substitute $v=-2$	C4	20
5	Explaining the concept of directional derivative (CLO-2)	Find the directional derivative of $f(x, y, z)=x^{3} y-$ $x^{2} z^{2}$ at the point $(-2,1,3)$ in the vector direction $i-$ $2 j+2 k$	- Find the definition of derivative - Substitute the point $(-2,1,3)$ - Find the direction	C4	20

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

DOCUMENT OF ODD SEMESTER FINAL EXAMINATION
 ACADEMIC YEAR OF 2021/2022
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Course/Code</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">: Multivariable Calculus</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Lecturer</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">: Team</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Program/Class</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$:$ S1/2020</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Date and Time</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$:$ Thursday, December 16, 2021</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Duration</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$: 100$ minutes</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Type</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$:$ Closed</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Course/Code | : Multivariable Calculus |
| :--- | :--- |
| Lecturer | : Team |
| Program/Class | $:$ S1/2020 |
| Date and Time | $:$ Thursday, December 16, 2021 |
| Duration | $: 100$ minutes |
| Type | $:$ Closed |</table-markdown></div>

1. Write answer you on sheet paper accompanied identity on each sheet.
2. Avoid use pencil in write answer.
3. Photo /scan sheet answer you like that so that answer you could read with good.
4. Sort answer from number about smallest and upload answers you in one file (pdf) with filename:

NIM_NAMA.
5. Work on by independent without any resources but yourself.

1. If $u=f(x, y, z)$ differentiable in area $D \subseteq R^{3}, x=r^{2}-s^{2}, y=s^{2}-t^{2}$ and $z=t^{2}-r^{2}$. Prove that the first partial derivative of the function u satisfies $\left(r s u_{t}+s t u_{r}+\right.$ $\left.t r u_{s}\right)(r, s, t)=0$
(Score 15)
2. Find the maximum value for function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ on the yield curve of the intersection between the plane $x-y=1$ and $y^{2}-z^{2}=1$.
(Score 15)
3. Let R be the bounded area by $x-2 y=0, x-2 y=4,3 x-y=1,3 x-y=8$, find the value

$$
\begin{equation*}
\iint_{R} \frac{x-2 y}{3 x-y} d A \tag{Score20}
\end{equation*}
$$

4. Drawing the space among surface $z=\sqrt{9-x^{2}-y^{2}}$ and $z=\sqrt{1-x^{2}-y^{2}}$ above the$x y$ plane, then calculate the volume using triple integral.
(Score 30)
5. Determine the line integral from function $f(x, y)=\sqrt{y} / x$ along the curve $\boldsymbol{r}(t)=t^{3} \boldsymbol{i}+$ $t^{4} \boldsymbol{j}$ and $1 / 2 \leq t \leq 1$
(Score 20)

UNESA

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
JURUSAN MATEMATIKA
Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER FINAL EXAMINATION

Examination Subjects
Lectures
Program
: Multivariable Calculus
: Team
: Mathematics

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Using the chain rule to determine the partial derivative (CLO-3)	If $u=f(x, y, z)$ differentiable in area $\quad D \subseteq R^{3}, x=r^{2}-$ $s^{2}, y=s^{2}-t^{2} \quad$ and $\quad z=t^{2}-$ r^{2}. Prove that the first partial derivative of the function u satisfies $\quad\left(r s u_{t}+s t u_{r}+\right.$ $\left.t r u_{s}\right)(r, s, t)=0$	- Find the derivative of u_{t}, u_{r} and u_{s} - Find $r s u_{t}(r, s, t)$ - Find $s t u_{r}(r, s, t)$ - Find $t r u_{s}(r, s, t)$ - Add $r s u_{t}+s t u_{r}+$ $\left.t r u_{s}\right)(r, s, t)$	C3	20
2.	Solve problems related to extreme values of functions with two variables (CLO-3)	Find the maximum value for function $f(x, y, z)=x^{2}+y^{2}+$ z^{2} on the yield curve of the intersection between the plane $x-y=1$ and $y^{2}-z^{2}=1$	- Use Lagrange Multiplier with two constraint - Find the first scalar - Find the second scalar - Find the extreme value	C4	20
3.	Solving the double integral using the transformation method (CLO-5)	Let R be the bounded area by $x-2 y=0, x-2 y=4,3 x-$ $y=1,3 x-y=8$, find the value $\iint_{R} \frac{x-2 y}{3 x-y} d A$	- Find the boundary of area R - Find the Jacobian - Evaluate the double integral	C4	20
4	Solve triple integrals with several methods Define triple integrals (CLO-3)	Drawing the space among surface $z=\sqrt{9-x^{2}-y^{2}}$ and $z=\sqrt{1-x^{2}-y^{2}}$ above the-	- Drawing the graph - Find the boundary - Evaluate the volume using triple integral	C4	20

		$x y$ plane, then calculate the volume using triple integral.			
5	Solve mathematical problems related to line integrals	Determine the line integral from function $f(x, y)=$ \sqrt{y} / x along the curve $\boldsymbol{r}(t)=$ $t^{3} \boldsymbol{i}+t^{4} \boldsymbol{j}$ and $1 / 2 \leq t \leq 1$	- Find a smooth parametrization - Find the boundary - Evaluate the line integral	C3	20

