MODULE PORTFOLIO ODD SEMESTER ACADEMIC YEAR 2020/2021

MODULE NAME	:	Ordinary Differential Equation	Ι	LECTURER:
MODULE CODE	:	4420103109		
CLASS	:	2019		
SEMESTER	:	3		
DATE	:			
COURSE		Knowledge (KNO-2) Identifying and explaining the characteristics of mathemat	tical problem	18
LEARNING		CLO-1: Identify the characteristic of the 1 st order and the 2 nd order of ODEs (Ord	dinary Differ	rential Equations)
OUTCOMES		CLO-2: Explain the characteristics of mathematical problems in the 1 st order and	d the 2 nd orde	er ODEs
		Skill (SKI-2) Applying the basic principles of mathematics to solve simple* mat	thematical pr	coblems.
		CLO-3: Implement basic principle of mathematics to solve the 1 st order and the 2	2 nd order of C	ODEs
		Competences (COM-3) Solving mathematical problems using technology		
		CLO-4: Solve mathematical problem in the 1 st order and the 2 nd order of ODEs u	using technol	logy
	:	Attitude and Social (SOC-1) Working collaboratively and having social sensitiv	ivity (obligat	ions as citizens and towards religion) and
		being able to bring change to a techno-ecopreneurship community.		
		CLO-5: Working collaboratively and active to participate in the process of solvir	ng mathemat	tical problems in the 1^{st} order and the 2^{nd}
		order of ODEs.		
		Correlation Between PLO and CLO Ordinary D	Differential E	quation
		ODE KNO-2 SKI-2 O	COM-3 SC	DC-1
		CLO-1 V		
		CLO-2 √		
		CLO-3 √		

	CLO-4 \checkmark								
	CLO-5 √								
LEARNING STRATEGIES	tures are carried out by activating students with the following strategies: Lectures. Discussions. Practices. Presentations. and Group ignments								
STRATEGIES ASSESSMENT	ignments to the second of the program of the progra	S he he							
	✓ UAS was carried out in the classroom with an implementation time of 100 minutes which follows the UAS implementation schedule of the department								

						Assess	men Pla	n					
		C	DE KN	NO-2		SKI-2	SKI-2		COM-3		SOC	C-1	
		CLO	-1 Tugas, U	JTS, UAS									
		CLO	-2 Tugas, U	JTS, UAS									
		CLO	-3		Tuga	as, UTS	, UAS						
		CLO	-4						Tugas				
		CLO	-5								Tug	as	
					We	eight of	Test A	bility					
			ODE			KN	NO-2	SKI	2 CO	M-3 S	SOC-1		
			Tugas			2	0%	20%	5 30)%	30%		
			UTS			4	0%	60%	6 0	%	0%		
			UAS			4	0%	60%	6 0	%	0%		
			The Calculation of PLO's Weight										
					PLO's Weight			t					
						Т	UTS	UAS		_			
				KNO-2	2	0.2	0.4	0.4	1				
				SKI-2		0.2	0.6	0.6	1.4				
				COM-	3	0.3	0	0	0.3				
				SOC-1		03	0	0	0.3				
				0001		1	1	1	3				
EARNING			The Calc	ulation of	PLO a	- nd The	– predica	ate of P	LO for e	ach stud	lents		
UTCOMES					SCORE		0				ATE OF PLO	C	
		NO	NIM	KNO-					KNO-				
	:			SKI-2	COM-	COM-3 SOC-		2	SKI-2	COM-3	SOC-1		
				_		00.01	0 00.						
				_	75.8								

	2	10020214002	75.00	75.0	75.00	75.00		C	6	C	6
	2	19030214003	75.00	90.8	75.00	/5.00		G	G	6	G
	3	19030214005	89.62	3	75.00	75.00		Е	Е	G	G
				92.5							
	4	19030214007	91.15	0	75.00	75.00		E	E	G	G
	5	19030214009	94.23	95.8 3	75.00	75.00		Е	Е	G	G
				64.6							
	6	19030214011	65.69	7	78.00	78.00		S	S	G	G
	7	19030214013	83.46	84.1 7	75.00	75.00		Е	Е	G	G
				70.8							
	8	19030214015	71.15	3	75.00	75.00		G	G	G	G
	9	19030214021	68.08	67.5 0	75.00	75.00		S	S	G	G
				85.8							
	10	19030214023	85.00	3	75.00	75.00		E	E	G	G
	11	19030214025	67.31	66.6 7	75.00	75.00		S	S	G	G
				55.8							
	12	19030214027	57.31	3	75.00	75.00		S	S	G	G
	13	19030214029	77.31	77.5 0	75.00	75.00		G	G	G	G
				60.4							
	14	19030214031	61.54	2	75.00	75.00	_	S	S	G	G
	15	19030214033	63.46	62.5 0	75.00	75.00		S	S	G	G
	10	10020214025	52.00	50.8	75.00	75.00				6	
	16	19030214035	52.69	3 61.6	/5.00	/5.00		F	F	G	G
	17	19030214037	62.69	7	75.00	75.00		S	S	G	G

	18	19030214039	75 77	75.8 3	75.00	75.00		G	G	G	G
	10	1903021-033	, 5., 7	59.1	75.00	75.00		J	<u> </u>		<u> </u>
	19	19030214041	60.38	7	75.00	75.00		S	S	G	G
				83.3				_	_		
	20	19030214043	82.69	3	/5.00	75.00		E	E	G	G
	21	19030214049	71.15	70.8 3	75.00	75.00		G	G	G	G
				67.5							
	22	19030214051	68.08	0	75.00	75.00		S	S	G	G
	23	19030214053	56.54	55.0 0	75.00	75.00		S	S	G	G
				50.8							
	24	19030214055	52.69	3	75.00	75.00		F	F	G	G
				59.1							
	25	19030214057	60.38	7	75.00	75.00		S	S	G	G
	26	40000044000	67.04	66.6	75.00	75.00		6		-	
	26	19030214061	67.31	/ []	/5.00	75.00	-	5	S	G	G
	27	19030214065	55.00	53.3 3	75.00	75.00		S	F	G	G
				50.0							
	28	19030214067	51.92	0	75.00	75.00		F	F	G	G
	29	16030214009	44.92	41.3 3	88.00	88.00		F_	F	Е	Е
				58.8							
	30	17030214017	61.08	3	88.00	88.00		S	S	Е	Е
				66.6							
	31	19030214002	68.31	7	88.00	88.00		S	S	E	E
	32	19030214004	63.38	61.3 3	88.00	88.00		S	S	Е	Е
				59.3							
	33	19030214006	61.54	3	88.00	88.00		S	S	Е	E

	34	1903021/008	77 23	76.3 3	88.00	88.00		G	G	F	F	
	34	19030214000	77.25	57.3	00.00	00.00		U	0	<u> </u>	<u> </u>	
	35	19030214010	59.69	3	88.00	88.00		S	S	E	Е	
				61.3								
	36	19030214012	63.38	3	88.00	88.00		S	S	E	E	
	37	19030214014	79 54	78.8 3	88.00	88.00		G	G	F	F	
	57	15050211011	75.51	63.8	00.00	00.00		Ŭ	0	-		
	38	19030214016	65.69	3	88.00	88.00		S	S	E	Е	
				69.8								
	39	19030214018	71.23	3	88.00	88.00	_	G	S	E	E	
	40	19030214020	63.38	61.3 3	88.00	88.00		S	S	Е	Е	
				58.8								
	41	19030214024	61.08	3	88.00	88.00		S	S	Е	Е	
				60.8								
	42	19030214028	62.92	3	88.00	88.00		S	S	E	E	
	43	19030214030	52.77	49.8 3	88.00	88.00		F	F	F	F	
			0	55.8						_		
	44	19030214034	58.31	3	88.00	88.00		S	S	E	E	
	45	10020214026	CD CO	61.6	00.00	00.00		C	C	F	_	
	45	19030214036	63.69	61.9	88.00	88.00		5	5	E	E	
	46	19030214038	63.85	3	88.00	88.00		S	S	E	E	
				66.3								
	47	19030214042	68.00	3	88.00	88.00		S	S	E	Е	
	48	19030214044	73.08	71.8 3	88.00	88.00		G	G	F	F	
	10	1000217077	, 5.00	62.8	00.00	00.00		J	0	-	<u> </u>	
	49	19030214046	64.77	3	88.00	88.00		S	S	Е	Е	

	-	1			1 1		1	-						
			50	19030214048	62.92	60.8 3	88.00	88.00	S	S	Е	E		
						64.3								
			51	19030214050	66.15	3	88.00	88.00	S	S	E	E		
						61.3					_	_		
			52	19030214052	63.38	3	88.00	88.00	S	S	E	E		
			53	19030214058	74.92	73.8 3	88.00	88.00	G	G	E	Е		
			54	19030214060	68.77	67.1 7	88.00	88.00	S	S	E	E		
			FF	10020214062	65 60	63.8	<u> </u>	<u> </u>	c	c	S F	c		
				19030214062	05.09	5 69.8	88.00	88.00	3	3	E			
			56	19030214064	71.23	3	88.00	88.00	G	S	E	Е		
						71.1								
			57	19030214066	72.46	7	88.00	88.00	G	G	E	E		
		E = Excellent G = Good S = Satisfy F = Fail												
LEARNING						PLO) Assessm	ent Rubric	:			-		
OUTCOMES		PLO	Description	Exce	llent		Go	bd		Satisf	y . 70		Fail	
ANALYSIS		KNO-2	Able to identi	$x \ge \frac{x}{1}$ fy Students be	able to	Stu	$70 \le x$ dents be al	≤ 80	Studen	$55 \le x \le 16$	$\frac{10}{10}$	Studer	x < 55	
		M (0 2	and explain t	he identify the		ider	ntify the		identif	v the		identi	fy the	
			characteristic	s characteris	tic of the	cha	racteristic	c of the 1 st	charac	, teristic (of the 1 st	chara	cteristic of the 1 st	
	:		of	1 st order an	d the 2 nd	ord	er and the	e 2 nd order	order a	and the 2	2 nd order	order	and the 2 nd order	
			mathematical	order of Ol	DEs	of C	ODEs (Or	dinary	of OD	Es (Ordi	nary	of OD	DEs (Ordinary	
			problems	(Ordinary		Dif	ferential l	Equations)	Differ	ential Ec	uations)	Differ	rential Equations)	
				Differentia	1	and	explain t	he	and ex	plain the	e	and ex	xplain the	
			Equations) and		cha	characteristics of			characteristics of			characteristics of		
				explain the	explain the			<u>l proble</u> ms	mathe	natical p	oroblems	mathe	mathematical problems	

SKI 2		characteristics of mathematical problems in the 1 st order and the 2 nd order ODEs with score at least 80.	in the 1 st order and the 2 nd order ODEs with score at least 70 and less than 80.	in the 1 st order and the 2 nd order ODEs with score at least 55 and less than 70.	in the 1 st order and the 2 nd order ODEs with score less than 55.
SK1-2	Able to apply the basic principles of mathematics to solve simple* mathematical problems.	Student be able to implement basic principle of mathematics to solve the 1^{st} order and the 2^{nd} order of ODEs with score at least 80.	Student be able to implement basic principle of mathematics to solve the 1 st order and the 2 nd order of ODEs with score at least 70 and less than 80	Student be able to implement basic principle of mathematics to solve the 1 st order and the 2 nd order of ODEs with score at least 55 and less than 70	Student be able to implement basic principle of mathematics to solve the 1 st order and the 2 nd order of ODEs with score less than 55.
COM-3	Able to solve mathematical problems using technology	Student be able to solve mathematical problem in the 1 st order and the 2 nd order of ODEs using technology with score at least 80.	Student be able to solve mathematical problem in the 1 st order and the 2 nd order of ODEs using technology with score at least 70 and less than 80.	Student be able to solve mathematical problem in the 1^{st} order and the 2^{nd} order of ODEs using technology with score at least 55 and less than 70.	Student be able to solve mathematical problem in the 1^{st} order and the 2^{nd} order of ODEs using technology with score less than 55.
SOC-1	Able to work collaboratively and having social sensitivity (obligations as citizens and towards religion) and being able to bring change to	Student be able to work collaboratively and active to participate in the process of solving mathematical problems in the 1 st order and the 2 nd order of ODEs with score at least 80.	Student be able to work collaboratively and active to participate in the process of solving mathematical problems in the 1 st order and the 2 nd order of ODEs with score at least 70 and less than 80	Student be able to work collaboratively and active to participate in the process of solving mathematical problems in the 1 st order and the 2 nd order of ODEs with score at least 55 and less than 70.	Student be able to work collaboratively and active to participate in the process of solving mathematical problems in the 1 st order and the 2 nd order of ODEs with score less than 55

	a techno- ecopreneurship							
	community							
				CLASSICAL	VALUE OF I	PLO		
			KNO-2	SKI-2	COM-3	SOC-1		
		Max	94.23	95.83	88.00	88.00		
		Rat	67.31	66.12	81.67	81.67		
		Min	44.92	41.33	75.00	75.00		
			AC	CHIEVEMEN	T NUMBER	OF PLO		

	E	6.00	6.00	29.00	29.00
	G	13.00	11.00	28.00	28.00
	S	33.00	34.00	0.00	0.00
	H	5.00	6.00	0.00	0.00
		57.00	57.00	57.00	57.00
		ACHIEVE	EMENT PER	RCENTAGE	OF PLO (%)
	E	10.53	10.53	50.88	50.88
	G	22.81	19.30	49.12	49.12
	S	57.89	59.65	0.00	0.00
	F	8.77	10.53	0.00	0.00
		100.00	100.00	100.00	100.00

RECOMMENDATIO		Several recommendations based on the last course of ordinary differential equation for better course in the future are as follow:
N FOR FUTURE		1. Motivate the students more in identifying the characteristic of the 1^{st} order and the 2^{nd} order of ODEs (Ordinary Differential Equations)
LEARNING		and explaining the characteristics of mathematical problems in the 1 st order and the 2 nd order of ODE. They have to practice more
	:	in implementing basic principle of mathematics to solve the 1 st order and the 2 nd order of ODEs. Beside the presentation of the materials,
		the students should be asked to share their opinion in class. This should extend the students understanding better and force them to read thoroughly
		2. Several products by the students can be extended end develop more for students own portfolios
RECOMMEDATION		NA
FOR INSTITUTION	•	

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA

www.tuv.com ID 9108650021

DOCUMENT OF ODD SEMESTER MIDTERM EXAMINATION **ACADEMIC YEAR OF 2021/2022**

ACADEMIN		
Course/Code	:	Ordinary Differential Equation
Lecturer	:	Rudianto Artiono, M.Si
Program/Class	:	S1/2020D
Date and Time	:	Wednesday, 13 Oktober 2021
Duration	:	100 minutes
Туре	:	Closed

- 1. Write your answers on a sheet of paper with identification on each sheet.
- 2. Avoid using a pencil in writing answers.
- 3. Photograph/scan your answer sheet so that your answers can be read properly.
- 4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: NIM_NAMA.
- 5. Work independently without any resources but yourself
 - Determine the solution to the following initial value problem in explicit form 1.

a.
$$y' = \frac{(3x^2 - e^x)}{(2y - 5)}, \quad y(0) = 1$$

b. $y' = \frac{x(x^2 + 1)}{4y^3}, \quad y(0) = -\frac{1}{\sqrt{2}}$

(Score 20)

- Determine whether the following equations are exact equations. If yes, determine the solution 2.
 - a. $(ye^{xy}\cos 2x 2e^{xy}\sin 2x + 2x) + (xe^{xy}\cos 2x 3)y' = 0$
 - b. $\frac{x}{(x^2+y^2)^{\frac{3}{2}}} + \frac{y}{(x^2+y^2)^{\frac{3}{2}}} \frac{dy}{dx} = 0$

(Score 20)

3. Determine the general solution of the following equation

$$(2x^{2} + 2y^{2} + x)dx + (x^{2} + y^{2} + y)dy = 0$$

with the integration factor depending on $w(x, y) = x^2 + y^2$

(Score 20)

4. Solve the following initial value problem

$$y' - \frac{3}{4}y = x^4 y^{\frac{1}{3}}, \qquad y(0) = 1$$

(Score 20)

5. Find the solution of the following equation if the special function is given

$$\frac{dy}{dt} = \frac{2\cos^2 t - \sin^2 t + y^2}{2\cos t}, \qquad y_1 = \sin t$$

(Score 20)

-----Good Luck------

www.unesa.ac.id | "Growing with character"

Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER MISTERM EXAMINATION

Examination Subjects

: Ordinary Differential Equations

Lectures

: Team

Program

: Mathematics

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to solve initial value problems by using separable equations method to solve a first- order differential equations (CLO-2, CLO-4)	Determine the solution to the following initial value problem in explicit form a. $y' = \frac{(3x^2 - e^x)}{(2y - 5)}$, $y(0) = 1$ b. $y' = \frac{x(x^2 + 1)}{4y^3}$, $y(0) = -\frac{1}{\sqrt{2}}$	 Separate the equation Integrating both side of the equations Determine the value of constant obtained from the integration prosess Determine the solution 	C3	20
2.	Able to identify an exact equation of first-order differential equation and able to solve it. (CLO-2, CLO-4)	Determine whether the following equations are exact equations. If yes, determine the solution a. $(ye^{xy}\cos 2x - 2e^{xy}\sin 2x + 2x) + (xe^{xy}\cos 2x - 3)y' = 0$ b. $\frac{x}{(x^2+y^2)^{\frac{3}{2}}} + \frac{y}{(x^2+y^2)^{\frac{3}{2}}}\frac{dy}{dx} = 0$	 Identify wheater the equation is exact or not. Use the method of exact equation Determine the solution 	C4	20
3.	Able to solve a non- exact first-order differential equation (CLO-4)	Determine the general solution of the following equation $(2x^2 + 2y^2 + x)dx$ $+ (x^2 + y^2)$ + y)dy = 0	 Identify wheater the equation is exact or not. Use the method of non-exact equation Determine the solution 	C4	20

www.tuv.com ID 9108650021

Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

		with the integration factor		
		depending on $w(x, y) = x^2 +$		
		y^2		
4	Able to solve a Bernoulli equation (CLO-4)	Solve the following initial value problem $y' - \frac{3}{4}y = x^4y^{\frac{1}{3}}, y(0) = 1$	 Divide both side of C3 the equation by y^{1/3} Convert the equation obtained to first-order linear differential equation Determine the integrating factor Solve the equation obtained by using integrating factor Determine the constan Determine the solution 	20
5	Able to solve a Ricatti	Find the solution of the	Convert the C3	20
	equation (CLO-4)	following equation if the special function is given $\frac{dy}{dt} = \frac{2\cos^2 t - \sin^2 t + y^2}{2\cos t},$ $y_1 = \sin t$	equation to the Bernoulli equation by using y1.	

DOCUMENT OF ODD SEMESTER FINAL EXAMINATION ACADEMIC YEAR OF 2021/2022

	•
Course/Code	: Ordinary Differential Equation
Lecturer	: Team
Program/Class	: S1/2020
Date and Time	: Wednesday, 15 Desember 2021
Duration	: 100 minutes
Туре	: Closed book

- 1. Write your answers on a sheet of paper with **identification** on each sheet.
- 2. Avoid using a pencil in writing answers.
- 3. Photograph/scan your answer sheet so that your answers can be read properly.
- 4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: **NIM_NAMA**.
- 5. Work independently without any resources but yourself

Complete all of the following questions

1. Given the following differential equation.

 $y'' + 2y' + 5y = 3e^{-t}\sin(2t) + 2t\cos(t); y(0) = 1; y'(0) = m \ge 0.$

- a. Determine the solution of the above equation.
- b. Determine the value of m such that y(0) = 0.
- 2. Given the following differential equation.

Find a function that satisfies the above equation.
$$y'' + 4y = \cot(2t)$$

(20)

(30)

(20)

(10)

3. Find the Laplace inverse (f(t)) of the following function.

a.
$$F(s) = \frac{s^2 + 2s - 5}{s^3 - 2s^2 + 9s - 18}$$
 (10)

b.
$$F(s) = \frac{(s+2)e^{-2s}}{s^2 - 4s + 1}$$
 (10)

4. Determine the solution to the equation

$$y'' - 2y' + 2y = f(t)$$

with

$$f(t) = \begin{cases} 2t & , 0 \le t < 3\\ t + 2, 3 \le t < 7\\ 1 & , t \ge 7 \end{cases}$$

and y(0) = 0, y'(0) = 1.

Please see the Laplace Transform table below.

Kampus Ketintang Jalan Ketintang, Gedung C8 Surabaya 60231 Telepon : +62 31 829-7677 Faksimili : +62 31 829-7677 http://matematika.fmipa.unesa.ac.id matematika@unesa.ac.id

Management System ISO 9001:2008

www.tuv.com ID 9105077982

TABLE 6.2.1 El	ementary Lap	lace Transforms
----------------	--------------	-----------------

	$f(t) = \mathcal{L}^{-1} \{ F(s) \}$	$F(s) = \mathcal{L} \{f(t)\}$	Notes
1.	1	$\frac{1}{s}$, $s > 0$	Sec. 6.1; Ex. 4
2.	$e^{\alpha t}$	$\frac{1}{s-a}, s > a$	Sec. 6.1; Ex. 5
3.	t^n , <i>n</i> a positive integer	$\frac{n!}{s^{n+1}}, s > 0$	Sec. 6.1; Prob. 24
4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, s > 0$	Sec. 6.1; Prob. 24
5.	sin(at)	$\frac{a}{s^2 + a^2}, s > 0$	Sec. 6.1; Ex. 7
6.	$\cos(at)$	$\frac{s}{s^2+a^2}, s > 0$	Sec. 6.1; Prob. 5
7.	sinh(<i>at</i>)	$\frac{a}{s^2 - a^2}, s > a $	Sec. 6.1; Prob. 7
8.	$\cosh(at)$	$\frac{s}{s^2 - a^2}, s > a $	Sec. 6.1; Prob. 6
9.	$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}, s > a$	Sec. 6.1; Prob. 10
10.	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}, s > a$	Sec. 6.1; Prob. 11
11.	$t^n e^{at}$, <i>n</i> a positive integer	$\frac{n!}{(s-a)^{n+1}}, s > a$	Sec. 6.1; Prob. 14
12.	$u_c(t) = \begin{cases} 0 & t < c \\ 1 & t \ge c \end{cases}$	$rac{e^{-cs}}{s}, s>0$	Sec. 6.3
13.	$u_c(t)f(t-c)$	$e^{-cs}F(s)$	Sec. 6.3
14.	$e^{ct}f(t)$	F(s-c)	Sec. 6.3
15.	f(ct)	$\frac{1}{c}F\left(rac{s}{c} ight), c > 0$	Sec. 6.3; Prob. 17
16.	$(f * g)(t) = \int_0^t f(t - \tau) g(\tau) d\tau$	F(s)G(s)	Sec. 6.6
17.	$\delta(t-c)$	e^{-cs}	Sec. 6.5
18.	$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$	Sec. 6.2; Cor. 6.2.2
19.	$(-t)^n f(t)$	$F^{(n)}(s)$	Sec. 6.2; Prob. 21

Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER FINAL EXAMINATION

Examination Subjects

: Ordinary Differential Equations

Lectures

Program

: Mathematics

: Team

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to use undetermined coefficients method to solve a second-order differential equations (CLO-2, CLO-4)	Consider the following differential equation. y'' + 2y' + 5y $= 3e^{-t}\sin(2t)$ $+ 2t\cos(t); y(0)$ $= 1; y'(0) = m \ge 0.$ a. Determine the solution of the equation obove. b. Determine the value of <i>m</i> such that $y(0) = 0.$	 Find the solution of the homogenous equation Find the Yp1 and Yp2 Find general solution Find the particular solution by substituting the initial value Find the value of m 	C3	30
2.	Able to use variation of parameters method to solve a second-order differential equations (CLO-2, CLO-4)	Consider the following differential equation. $y'' + 4y = \cot(2t)$ Find the function y that satisfies the equation obove.	 Find the solution of the homogenous equation Determine Y1 and Y2 Find U1 and U2 by using the variation of parameters method 	C4	20
3.	Able to find the lapace inverse of a function (CLO-4)	Find the Laplace Inverse $(f(t))$ of the following functions. a. $F(s) = \frac{s^2+2s-5}{s^3-2s^2+9s-18}$ b. $F(s) = \frac{(s+2)e^{-2s}}{s^2-4s+1}$	 Modify the algebraic form pf the function F(s) Match the form with the lapcale trandform table Determine the inverse 	C4	20
4	Able to use lapclae transform to solve a second-order ODE with unit function (CLO-4)	Determine the solution of the ODE below. y'' - 2y' + 2y = f(t) where	 Expres f(t) in step function form. Find the laplace transform of the equation 	C5	30

www.tuv.com ID 9108650021

Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

	$(2t, 0 \le t < 3)$	•	Modify the algebraic	
	$f(t) = \{t + 2, 3 \le t < 7\}$		of of the function	
	$\begin{pmatrix} 1 & , & t \ge 7 \end{pmatrix}$		obtained	
	and $y(0) = 0, y'(0) = 1$.	•	Find the inverse of	
			the function F(s)	
	See the Laplace Transform table	•	Determine the	
	below.		solution	

