MODULE PORTFOLIO

ODD SEMESTER ACADEMIC YEAR 2020/2021

		2	19030214003	75.00	$\begin{gathered} 75.0 \\ 0 \end{gathered}$	75.00	75.00	G	G	G	G
		3	19030214005	89.62	$\begin{gathered} 90.8 \\ 3 \end{gathered}$	75.00	75.00	E	E	G	G
		4	19030214007	91.15	$\begin{gathered} 92.5 \\ 0 \end{gathered}$	75.00	75.00	E	E	G	G
		5	19030214009	94.23	$\begin{gathered} 95.8 \\ 3 \end{gathered}$	75.00	75.00	E	E	G	G
		6	19030214011	65.69	$\begin{gathered} 64.6 \\ 7 \end{gathered}$	78.00	78.00	S	S	G	G
		7	19030214013	83.46	$\begin{gathered} 84.1 \\ 7 \end{gathered}$	75.00	75.00	E	E	G	G
		8	19030214015	71.15	$\begin{gathered} 70.8 \\ 3 \\ \hline \end{gathered}$	75.00	75.00	G	G	G	G
		9	19030214021	68.08	$\begin{gathered} 67.5 \\ 0 \\ \hline \end{gathered}$	75.00	75.00	S	S	G	G
		10	19030214023	85.00	$\begin{gathered} 85.8 \\ 3 \end{gathered}$	75.00	75.00	E	E	G	G
		11	19030214025	67.31	$\begin{gathered} 66.6 \\ 7 \\ \hline \end{gathered}$	75.00	75.00	S	S	G	G
		12	19030214027	57.31	$\begin{gathered} 55.8 \\ 3 \\ \hline \end{gathered}$	75.00	75.00	S	S	G	G
		13	19030214029	77.31	$\begin{gathered} 77.5 \\ 0 \end{gathered}$	75.00	75.00	G	G	G	G
		14	19030214031	61.54	$\begin{gathered} 60.4 \\ 2 \end{gathered}$	75.00	75.00	S	S	G	G
		15	19030214033	63.46	$\begin{gathered} 62.5 \\ 0 \end{gathered}$	75.00	75.00	S	S	G	G
		16	19030214035	52.69	$\begin{gathered} 50.8 \\ 3 \end{gathered}$	75.00	75.00	F	F	G	G
		17	19030214037	62.69	$\begin{gathered} 61.6 \\ 7 \\ \hline \end{gathered}$	75.00	75.00	S	S	G	G

		18	19030214039	75.77	$\begin{gathered} 75.8 \\ 3 \end{gathered}$	75.00	75.00	G	G	G	G
		19	19030214041	60.38	$\begin{gathered} 59.1 \\ 7 \end{gathered}$	75.00	75.00	S	S	G	G
		20	19030214043	82.69	$\begin{gathered} 83.3 \\ 3 \end{gathered}$	75.00	75.00	E	E	G	G
		21	19030214049	71.15	$\begin{gathered} 70.8 \\ 3 \end{gathered}$	75.00	75.00	G	G	G	G
		22	19030214051	68.08	$\begin{gathered} 67.5 \\ 0 \end{gathered}$	75.00	75.00	S	S	G	G
		23	19030214053	56.54	$\begin{gathered} 55.0 \\ 0 \end{gathered}$	75.00	75.00	S	S	G	G
		24	19030214055	52.69	$\begin{gathered} 50.8 \\ 3 \\ \hline \end{gathered}$	75.00	75.00	F	F	G	G
		25	19030214057	60.38	$\begin{gathered} 59.1 \\ 7 \\ \hline \end{gathered}$	75.00	75.00	S	S	G	G
		26	19030214061	67.31	$\begin{gathered} 66.6 \\ 7 \end{gathered}$	75.00	75.00	S	S	G	G
		27	19030214065	55.00	$\begin{gathered} 53.3 \\ 3 \end{gathered}$	75.00	75.00	S	F	G	G
		28	19030214067	51.92	$\begin{gathered} 50.0 \\ 0 \\ \hline \end{gathered}$	75.00	75.00	F	F	G	G
		29	16030214009	44.92	$\begin{gathered} 41.3 \\ 3 \\ \hline \end{gathered}$	88.00	88.00	F	F	E	E
		30	17030214017	61.08	$\begin{gathered} 58.8 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		31	19030214002	68.31	$\begin{gathered} 66.6 \\ 7 \end{gathered}$	88.00	88.00	S	S	E	E
		32	19030214004	63.38	$\begin{gathered} 61.3 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		33	19030214006	61.54	$\begin{gathered} 59.3 \\ 3 \\ \hline \end{gathered}$	88.00	88.00	S	S	E	E

		34	19030214008	77.23	$\begin{gathered} 76.3 \\ 3 \end{gathered}$	88.00	88.00	G	G	E	E
		35	19030214010	59.69	$\begin{gathered} 57.3 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		36	19030214012	63.38	$\begin{gathered} 61.3 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		37	19030214014	79.54	$\begin{gathered} 78.8 \\ 3 \end{gathered}$	88.00	88.00	G	G	E	E
		38	19030214016	65.69	$\begin{gathered} 63.8 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		39	19030214018	71.23	$\begin{gathered} 69.8 \\ 3 \\ \hline \end{gathered}$	88.00	88.00	G	S	E	E
		40	19030214020	63.38	$\begin{gathered} 61.3 \\ 3 \\ \hline \end{gathered}$	88.00	88.00	S	S	E	E
		41	19030214024	61.08	$\begin{gathered} 58.8 \\ 3 \\ \hline \end{gathered}$	88.00	88.00	S	S	E	E
		42	19030214028	62.92	$\begin{gathered} 60.8 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		43	19030214030	52.77	$\begin{gathered} 49.8 \\ 3 \end{gathered}$	88.00	88.00	F	F	E	E
		44	19030214034	58.31	$\begin{gathered} 55.8 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		45	19030214036	63.69	$\begin{gathered} 61.6 \\ 7 \end{gathered}$	88.00	88.00	S	S	E	E
		46	19030214038	63.85	$\begin{gathered} 61.8 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		47	19030214042	68.00	$\begin{gathered} 66.3 \\ 3 \end{gathered}$	88.00	88.00	S	S	E	E
		48	19030214044	73.08	$\begin{gathered} 71.8 \\ 3 \\ \hline \end{gathered}$	88.00	88.00	G	G	E	E
		49	19030214046	64.77	$\begin{gathered} 62.8 \\ 3 \\ \hline \end{gathered}$	88.00	88.00	S	S	E	E

		characteristics of mathematical problems in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order ODEs with score at least 80 .	in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order ODEs with score at least 70 and less than 80.	in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order ODEs with score at least 55 and less than 70 .	in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order ODEs with score less than 55.
SKI-2	Able to apply the basic principles of mathematics to solve simple* mathematical problems.	Student be able to implement basic principle of mathematics to solve the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs with score at least 80 .	Student be able to implement basic principle of mathematics to solve the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs with score at least 70 and less than 80..	Student be able to implement basic principle of mathematics to solve the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs with score at least 55 and less than 70	Student be able to implement basic principle of mathematics to solve the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs with score less than 55.
COM-3	Able to solve mathematical problems using technology	Student be able to solve mathematical problem in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs using technology with score at least 80 .	Student be able to solve mathematical problem in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs using technology with score at least 70 and less than 80 .	Student be able to solve mathematical problem in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs using technology with score at least 55 and less than 70.	Student be able to solve mathematical problem in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs using technology with score less than 55.
SOC-1	Able to work collaboratively and having social sensitivity (obligations as citizens and towards religion) and being able to bring change to	Student be able to work collaboratively and active to participate in the process of solving mathematical problems in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs with score at least 80 .	Student be able to work collaboratively and active to participate in the process of solving mathematical problems in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs with score at least 70 and less than 80	Student be able to work collaboratively and active to participate in the process of solving mathematical problems in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs with score at least 55 and less than 70.	Student be able to work collaboratively and active to participate in the process of solving mathematical problems in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs with score less than 55

			a techno- ecopreneurship community			

	CLASSICAL VALUE OF PLO			
	KNO-2	SKI-2	COM-3	SOC-1
Max	94.23	95.83	88.00	88.00
Rat	67.31	66.12	81.67	81.67
Min	44.92	41.33	75.00	75.00
ACHIEVEMENT NUMBER OF PLO				

		ACHIEVEMENT PERCENTAGE OF PLO	CLASSICAL VALUE OF PLO
STUDENT’S LEARNING PERFORMANCE ANALYSIS		In general, the students in ordinary differential course have mastered students, 6% of students achieved excellent criteria in KNO-2, 6% excellent criteria in COM-3 and 29% of students achieved excellent c in KNO-2 and SKI-2. However, there are still some students have failed 2 and SKI-2, respectively. It seems that they have some difficulties in (Ordinary Differential Equations) and explaining the character ODE. They also have problem to implement basic principle of n	nowledge, skill, competences and social attitude in the course. From 57 dents achieved excellent criteria in SKI-2, 29% of students achieved in SOC-1. We can also see that some students achieved satisfy criteria his course. It's about 5% and 6% of student have failed criteria in KNOifying the characteristic of the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs of mathematical problems in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of matics to solve the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs.

RECOMMENDATIO N FOR FUTURE LEARNING		Several recommendations based on the last course of ordinary differential equation for better course in the future are as follow: 1. Motivate the students more in identifying the characteristic of the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs (Ordinary Differential Equations) and explaining the characteristics of mathematical problems in the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODE. They have to practice more in implementing basic principle of mathematics to solve the $1^{\text {st }}$ order and the $2^{\text {nd }}$ order of ODEs. Beside the presentation of the materials, the students should be asked to share their opinion in class. This should extend the students understanding better and force them to read thoroughly 2. Several products by the students can be extended end develop more for students own portfolios
RECOMMEDATION FOR INSTITUTION	:	NA

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKANTINGGI

Course/Code	$:$	Ordinary Differential Equation
Lecturer	$:$	Rudianto Artiono, M.Si
Program/Class	$:$	S1/2020D
Date and Time	$:$	Wednesday, 13 Oktober 2021
Duration	$:$	100 minutes
Type	$:$	Closed

1. Write your answers on a sheet of paper with identification on each sheet.
2. Avoid using a pencil in writing answers.
3. Photograph/scan your answer sheet so that your answers can be read properly.
4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: NIM_NAMA.
5. Work independently without any resources but yourself
6. Determine the solution to the following initial value problem in explicit form
a. $\quad y^{\prime}=\frac{\left(3 x^{2}-e^{x}\right)}{(2 y-5)}, \quad y(0)=1$
b. $\quad y^{\prime}=\frac{x\left(x^{2}+1\right)}{4 y^{3}}, \quad y(0)=-\frac{1}{\sqrt{2}}$
(Score 20)
7. Determine whether the following equations are exact equations. If yes, determine the solution
a. $\left(y e^{x y} \cos 2 x-2 e^{x y} \sin 2 x+2 x\right)+\left(x e^{x y} \cos 2 x-3\right) y^{\prime}=0$
b. $\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} \frac{d y}{d x}=0$
(Score 20)
8. Determine the general solution of the following equation

$$
\left(2 x^{2}+2 y^{2}+x\right) d x+\left(x^{2}+y^{2}+y\right) d y=0
$$

with the integration factor depending on $w(x, y)=x^{2}+y^{2}$
(Score 20)
4. Solve the following initial value problem

$$
y^{\prime}-\frac{3}{4} y=x^{4} y^{\frac{1}{3}}, \quad y(0)=1
$$

5. Find the solution of the following equation if the special function is given

$$
\frac{d y}{d t}=\frac{2 \cos ^{2} t-\sin ^{2} t+y^{2}}{2 \cos t}, \quad y_{1}=\sin t
$$

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA
 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER MISTERM EXAMINATION

Examination Subjects

Lectures

Program
: Ordinary Differential Equations
: Team
: Mathematics

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to solve initial value problems by using separable equations method to solve a firstorder differential equations (CLO-2, CLO-4)	Determine the solution to the following initial value problem in explicit form a. $\quad y^{\prime}=\frac{\left(3 x^{2}-e^{x}\right)}{(2 y-5)}, \quad y(0)=1$ b. $\quad y^{\prime}=\frac{x\left(x^{2}+1\right)}{4 y^{3}}, \quad y(0)=$ $-\frac{1}{\sqrt{2}}$	- Separate the equation - Integrating both side of the equations - Determine the value of constant obtained from the integration prosess - Determine the solution	C3	20
2.	Able to identify an exact equation of first-order differential equation and able to solve it. (CLO-2, CLO-4)	Determine whether the following equations are exact equations. If yes, determine the solution a. $\left(y e^{x y} \cos 2 x-\right.$ $\left.2 e^{x y} \sin 2 x+2 x\right)+$ $\left(x e^{x y} \cos 2 x-3\right) y^{\prime}=0$ b. $\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} \frac{d y}{d x}=0$	- Identify wheater the equation is exact or not. - Use the method of exact equation - Determine the solution	C4	20
3.	Able to solve a nonexact first-order differential equation (CLO-4)	Determine the general solution of the following equation $\begin{aligned} \left(2 x^{2}+2 y^{2}+\right. & x) d x \\ & +\left(x^{2}+y^{2}\right. \\ & +y) d y=0 \end{aligned}$	- Identify wheater the equation is exact or not. - Use the method of non-exact equation - Determine the solution	C4	20

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

		with the integration factor depending on $w(x, y)=x^{2}+$ y^{2}			
4	Able tosolve a Bernoulli (CLO-4)	Solve the following initial value problem $y^{\prime}-\frac{3}{4} y=x^{4} y^{\frac{1}{3}}, \quad y(0)=1$	- Divide both side of the equation by $y^{\frac{1}{3}}$ - Convert the equation obtained to first-order linear differential equation - Determine the integrating factor - Solve the equation obtained by using integrating factor - Determine the constan - Determine the solution	C3	20
5	Able to solve a Ricatti equation (CLO-4)	Find the solution of the following equation if the special function is given $\begin{aligned} & \frac{d y}{d t} \\ & =\frac{2 \cos ^{2} t-\sin ^{2} t+y^{2}}{2 \cos t} \\ & y_{1}=\sin t \end{aligned}$	- Convert the equation to the Bernoulli equation by using y1.	C3	20

Management

DOCUMENT OF ODD SEMESTER FINAL EXAMINATION ACADEMIC YEAR OF 2021/2022

Course/Code	: Ordinary Differential Equation
Lecturer	: Team
Program/Class	$:$ S1/2020
Date and Time	$:$ Wednesday, 15 Desember 2021
Duration	$: 100$ minutes
Type	$:$ Closed book

1. Write your answers on a sheet of paper with identification on each sheet.
2. Avoid using a pencil in writing answers.
3. Photograph/scan your answer sheet so that your answers can be read properly.
4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: NIM_NAMA.
5. Work independently without any resources but yourself

Complete all of the following questions

1. Given the following differential equation.

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+5 y=3 e^{-t} \sin (2 t)+2 t \cos (t) ; y(0)=1 ; y^{\prime}(0)=m \geq 0 . \tag{20}
\end{equation*}
$$

a. Determine the solution of the above equation.
b. Determine the value of m such that $y(0)=0$.
2. Given the following differential equation.

$$
\begin{equation*}
y^{\prime \prime}+4 y=\cot (2 t) \tag{20}
\end{equation*}
$$

Find a function that satisfies the above equation.
3. Find the Laplace inverse $(f(t))$ of the following function.
a. $F(s)=\frac{s^{2}+2 s-5}{s^{3}-2 s^{2}+9 s-18}$
b. $F(s)=\frac{(s+2) e^{-2 s}}{s^{2}-4 s+1}$
4. Determine the solution to the equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=f(t)
$$

with

$$
f(t)=\left\{\begin{array}{c}
2 t, 0 \leq t<3 \tag{30}\\
t+2,3 \leq t<7 \\
1, \quad t \geq 7
\end{array}\right.
$$

and $y(0)=0, y^{\prime}(0)=1$.
Please see the Laplace Transform table below.
"Honesty is the gate of your success"
~ Don't play with a mask to hide the truth ~

TABLE 6.2.1 Elementary Lapla	ce Transforms	
$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$	Notes
1. 1	$\frac{1}{s}, \quad s>0$	Sec. 6.1; Ex. 4
2. $e^{a t}$	$\frac{1}{s-a}, \quad s>a$	Sec. 6.1; Ex. 5
3. t^{n}, n a positive integer	$\frac{n!}{s^{n+1}}, \quad s>0$	Sec. 6.1; Prob. 24
4. $t^{p}, \quad p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$	Sec. 6.1; Prob. 24
5. $\sin (a t)$	$\frac{a}{s^{2}+a^{2}}, \quad s>0$	Sec. 6.1; Ex. 7
6. $\cos (a t)$	$\frac{s}{s^{2}+a^{2}}, \quad s>0$	Sec. 6.1; Prob. 5
7. $\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}, \quad s>\|a\|$	Sec. 6.1; Prob. 7
8. $\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}, \quad s>\|a\|$	Sec. 6.1; Prob. 6
9. $e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$	Sec. 6.1; Prob. 10
10. $e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$	Sec. 6.1; Prob. 11
11. $t^{n} e^{a t}, n$ a positive integer	$\frac{n!}{(s-a)^{n+1}}, \quad s>a$	Sec. 6.1; Prob. 14
12. $u_{c}(t)= \begin{cases}0 & t<c \\ 1 & t \geq c\end{cases}$	$\frac{e^{-c s}}{s}, \quad s>0$	Sec. 6.3
13. $u_{c}(t) f(t-c)$	$e^{-c s} F(s)$	Sec. 6.3
14. $e^{c t} f(t)$	$F(s-c)$	Sec. 6.3
15. $f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$	Sec. 6.3; Prob. 17
16. $(f * g)(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$	Sec. 6.6
17. $\delta(t-c)$	$e^{-c s}$	Sec. 6.5
18. $f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$	Sec. 6.2; Cor. 6.2.2
19. $(-t)^{n} f(t)$	$F^{(n)}(s)$	Sec. 6.2; Prob. 21

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA
Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER FINAL EXAMINATION

Examination Subjects

Lectures

Program
: Ordinary Differential Equations
: Team
: Mathematics

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to use undetermined coefficients method to solve a second-order differential equations (CLO-2, CLO-4)	Consider the following differential equation. $\begin{aligned} & y^{\prime \prime}+2 y^{\prime}+5 y \\ & =3 e^{-t} \sin (2 t) \\ & +2 t \cos (t) ; y(0) \\ & =1 ; y^{\prime}(0)=m \geq 0 . \end{aligned}$ a. Determine the solution of the equation obove. b. Determine the value of m such that $y(0)=0$.	- Find the solution of the homogenous equation - Find the Yp1 and Yp2 - Find general solution - Find the particular solution by substituting the initial value - Find the value of m	C3	30
2.	Able to use variation of parameters method to solve a second-order differential equations (CLO-2, CLO-4)	Consider the following differential equation. $y^{\prime \prime}+4 y=\cot (2 t)$ Find the function y that satisfies the equation obove.	- Find the solution of the homogenous equation - Determine Y1 and Y2 - Find U1 and U2 by using the variation of parameters method	C4	20
3.	Able to find the lapace inverse of a function (CLO-4)	Find the Laplace Inverse $(f(t))$ of the following functions. a. $\quad F(s)=\frac{s^{2}+2 s-5}{s^{3}-2 s^{2}+9 s-18}$ b. $F(s)=\frac{(s+2) e^{-2 s}}{s^{2}-4 s+1}$	- Modify the algebraic form pf the function F(s) - Match the form with the lapcale trandform table - Determine the inverse	C4	20
4	Able to use lapclae transform to solve a second-order ODE with unit function (CLO-4)	Determine the solution of the ODE below. $y^{\prime \prime}-2 y^{\prime}+2 y=f(t)$ where	- Expres $f(t)$ in step function form. - Find the laplace transform of the equation	C5	30

		$\begin{aligned} & f(t)=\left\{\begin{array}{cc} 2 t \quad, 0 \leq t<3 \\ t+2, & \leq t<7 \\ 1, & t \geq 7 \end{array}\right. \\ & \text { and } y(0)=0, y^{\prime}(0)=1 \end{aligned}$ See the Laplace Transform table below.		Modify the algebraic of of the function obtained Find the inverse of the function F (s) Determine the solution	

