MODULE PORTFOLIO ODD SEMESTER ACADEMIC YEAR 2020/2021

MODULE NAME	:	Partial Differential Equation	LECTURER:
MODULE CODE	:	4420103110	
CLASS	:	2019	
SEMESTER	:	3	
DATE	:		
COURSE		Knowledge (KNO-1) Demonstrating mathematical knowledge and mathematical insight	
LEARNING		CLO-1: Demonstrate mathematical knowledge in the first-order linear of PDEs, the second	nd-order linear of PDEs, the wave equation
OUTCOMES		and the heat equation	
		Knowledge (KNO-2) Identifying and explaining the characteristics of mathematical proble	ems
		CLO-2: Identify the characteristic of mathematical problem in the first-order linear of PDEs	s, the second-order linear of PDEs, the wave
		equation and the heat equation	
		CLO-3: Explain the characteristics of mathematical problems in	
	:	the first-order linear of PDEs, the second-order linear of PDEs, the wave equation	and the heat equation
		Skill (SKI-2) Applying the basic principles of mathematics to solve simple* mathematical	problems.
		CLO-4: Implement basic principle of mathematics to solve the first-order linear of PDEs, s	econd-order linear of PDEs, wave equation
		and heat equation.	
		Competences (COM-3) Solving mathematical problems using technology	
		CLO-5: Solve mathematical problem in the first-order linear of PDEs, second-order linear	of PDEs, wave equation and heat equation
		using technology.	
LEARNING		Lectures are carried out by activating students with the following strategies: Lectures. Discussions.	Practices. Presentations. and Group
STRATEGIES	•	Assignments	
ASSESSMENT		The assessment carried out during the lecture includes the following three components.	
	:	1. Assignment (Quiz and Presentation)	

		PDE	KNO-1	KNO-2	SKI-2	COM-3	
				Assessmen Pla	n		
01	dinary different	ntial equation	module				
✓ T	he UAS was c	carried out to	see the achievement	ts of the PLO and C	LO which are in ac	cordance with the	characteristics
of	the department	nt					
✓ U	AS was carried	d out in the cla	ssroom with an impl	lementation time of 1	00 minutes which fo	ollows the UAS imp	lementation sc
✓ U	AS was held a	t the 16th mee	eting				
3. F	inal Exam (U	AS)					
01	dinary differen	ntial equation	module				
✓ T	he UTS was c	carried out to	see the achievement	ts of the PLO and C	LO which are in ac	cordance with the o	characteristics
✓ U	TS was carried	d out in the cla	ssroom with an imp	lementation time of 1	00 minutes accordi	ng to the module sch	hedule
✔ U	TS was held a	t the 8th meeti	ng				
2. M	lidterm Exam	n (UTS)					
01	dinary differen	ntial equation	module				
✓ T	he assignment	was carried or	it to see the achiever	nents of the PLO and	l CLO which are in a	accordance with the	characteristics
• D	resentation As	sessment Rub	ic	ner groups provided	un absessment of	the progressing gro	up according
✓ E	ach group pre	esented one m	aterial while the of	her groups provided	an assessment of	the progressing gro	oun according
✓ T	he presentation	n was a group	assignment in the fo	rm of a group presen	tation about the mat	erials to be discusse	d after the UT
✓ T	he quiz was he	eld in the class	room for 100 minute	28			
🗸 Т	he quiz was an	independent/	individual task in the	e form of a description	on of the materials th	at have been discus	sed before the
🗸 A	ssignments we	ere given twice	e in one semester, be	fore UTS (a quiz) an	d after UTS (a prese	entation)	
1. A	ssignment (T	ugas)					
3	. Final Exam	(UAS)					
		$\operatorname{ann}(013)$					

			CLO-3	3			Tugas	, UTS	, UAS					
			CLO-4	ŀ							Tugas			
			CLO-5	5									Tu	gas
							Woic	aht of	Tost A	L:1:4				
				PD	F		vv eig	giit oi KN	$\frac{1 \text{ est A}}{\text{JO}_{-1}}$	KNO-1) 6	KI_2	COM-3	
				Tug				20	0%	20%		XI- 2 30%	30%	
				UTS				4	0%	60%		0%	0%	
				UAS				4(0%	60%		0%	0%	
						The	Calcu	lation	n of PLO)'s Weig	ht			
							I	PLO's	s Weigh	it	,iit			
								Т	UTS	UAS				
						KNO-1		0.2	0.4	0.4	1			
						KNO-2		0.2	0.6	0.6	1.4			
						SKI-2		0.3	0	0	0.3			
						COM-3		0.3	0	0	0.3			
								1	1	1	3			
LEARNING OUTCOMES				T	he Calcula	ation of Pl	LO and	d The	predica	ate of PL	O for	each st	udents	
		NO	NUM		SCORE	OF PLO				PREI	DICATI	E OF PLO	כ	
				KNO-1	KNO-2	SKI-2	СОМ	-3	KNO	-1 KN(D-2	SKI-2	COM-3	
		1	15030214023	52.69	50.83	75.00	75.0	0	F	F	:	G	G	
		2	17030214025	66.62	65.33	82.00	82.0	0	S	S	5	Е	E	
	:	3	17030214044	70.92	69.83	84.00	84.0	0	G	9	5	Е	E	
		4	17030214056	63.62	61.83	85.00	85.0	0	S	S	5	Е	E	
		5	17030214058	72.69	71.67	85.00	85.0	0	G	0	6	Е	E	
		6	17030214059	62.00	60.33	82.00	82.0	0	S	S	5	Е	E	
		7	18030214004	59.62	57.50	85.00	85.0	0	S	S	5	Е	E	
		8	18030214005	70.38	69.17	85.00	85.0	0	G	5	5	Е	E	

										,
9	18030214006	70.15	69.00	84.00	84.00	G	S	E	Е	I
10	18030214010	65.23	63.50	86.00	86.00	S	S	E	Е	1
11	18030214011	69.77	68.50	85.00	85.00	S	S	Е	E	1
12	18030214012	59.23	57.00	86.00	86.00	S	S	E	Е	I
13	18030214016	66.92	65.17	88.00	88.00	S	S	E	Е	I
14	18030214017	75.00	74.17	85.00	85.00	G	G	E	Е	I
15	18030214018	77.92	77.33	85.00	85.00	G	G	Е	E	1
16	18030214019	74.00	73.17	84.00	84.00	G	G	E	Е	I
17	18030214020	75.92	75.00	87.00	87.00	G	G	E	Е	I
18	18030214021	77.08	76.33	86.00	86.00	G	G	Е	Е	1
19	18030214025	66.00	64.67	82.00	82.00	S	S	Е	Е	1
20	18030214026	67.77	66.50	83.00	83.00	S	S	E	Е	I
21	18030214027	67.77	66.50	83.00	83.00	S	S	E	E	I
22	18030214033	54.92	52.83	80.00	80.00	F	F	E	E	I
23	18030214034	59.08	57.17	82.00	82.00	S	S	E	E	I
24	18030214035	65.77	64.33	83.00	83.00	S	S	E	Е	I
25	18030214036	79.31	78.67	87.00	87.00	G	G	Е	Е	1
26	18030214040	57.38	55.33	82.00	82.00	S	S	E	E	I
27	18030214046	61.08	59.17	84.00	84.00	S	S	E	E	1
28	18030214047	74.62	73.83	84.00	84.00	G	G	E	E	I
29	18030214048	88.08	88.33	85.00	85.00	E	E	E	E	1
30	18030214052	79.54	78.83	88.00	88.00	G	G	E	Е	1
31	18030214053	89.31	89.50	87.00	87.00	E	E	E	Е	1
32	18030214054	80.23	79.83	85.00	85.00	E	G	Е	Е	I
33	18030214058	68.00	66.83	82.00	82.00	S	S	E	Е	1
34	18030214060	66.38	64.83	85.00	85.00	S	S	Е	Е	
35	18030214064	58.62	56.50	84.00	84.00	S	S	Е	Е	
36	18030214065	60.15	58.17	84.00	84.00	S	S	Е	Е	
37	18030214066	59.46	57.33	85.00	85.00	S	S	Е	Е	

38	16030214009	80.00	80.00	80.00	80.00	E	E	Е	Е	
39	17030214029	49.23	46.67	80.00	80.00	F	F	Е	Е	
40	18030214001	74.62	74.17	80.00	80.00	G	G	Е	Е	
41	18030214002	58.46	56.67	80.00	80.00	S	S	E	E	
42	18030214003	75.38	75.00	80.00	80.00	G	G	Е	Е	
43	18030214007	69.23	68.33	80.00	80.00	S	S	Е	Е	
44	18030214008	60.77	59.17	80.00	80.00	S	S	Е	Е	
45	18030214009	79.23	79.17	80.00	80.00	G	G	E	E	
46	18030214013	78.85	78.75	80.00	80.00	G	G	E	E	
47	18030214014	64.62	63.33	80.00	80.00	S	S	E	E	
48	18030214015	66.54	65.42	80.00	80.00	S	S	Е	Е	
49	18030214022	76.15	75.83	80.00	80.00	G	G	Е	Е	
50	18030214023	73.85	73.33	80.00	80.00	G	G	E	E	
51	18030214029	55.38	53.33	80.00	80.00	S	F	E	E	
52	18030214030	67.69	66.67	80.00	80.00	S	S	Е	Е	
53	18030214031	58.46	56.67	80.00	80.00	S	S	E	E	
54	18030214032	65.38	64.17	80.00	80.00	S	S	Е	Е	
55	18030214037	66.15	65.00	80.00	80.00	S	S	Е	Е	
56	18030214038	63.08	61.67	80.00	80.00	S	S	Е	Е	
57	18030214039	61.54	60.00	80.00	80.00	S	S	E	E	
58	18030214044	49.23	46.67	80.00	80.00	F	F	E	E	
59	18030214045	55.38	53.33	80.00	80.00	S	F	Е	Е	
60	18030214050	50.77	48.33	80.00	80.00	F	F	Е	Е	
61	18030214051	60.00	58.33	80.00	80.00	S	S	Е	Е	
62	18030214055	60.00	58.33	80.00	80.00	S	S	Е	Е	
63	18030214056	60.77	59.17	80.00	80.00	S	S	Е	Е	
64	18030214057	58.46	56.67	80.00	80.00	S	S	Е	Е	
65	18030214061	65.00	63.75	80.00	80.00	S	S	Е	Е	
66	18030214062	60.77	59.17	80.00	80.00	S	S	Е	Е	1

LEARNING	67 18 68 18 69 18 70 18 $F = Excellent$ $G = Good$ $S = Satisfy$ $F = Fail$ PLO	030214063 87 030214067 60 030214068 60 030214069 59 030214069 59	.69 88.33 .77 59.17 .00 58.33 .23 57.50	80.00 80.00 80.00 80.00	80.00 80.00 80.00 80.00	E S S S S S S S S S S S S S S S S S S S	E S S S	E I	E E E	
LEARNING	$ \begin{array}{c cccc} 68 & 18 \\ 69 & 18 \\ \hline 70 & 18 \\ \hline F = Excellent \\ G = Good \\ S = Satisfy \\ F = Fail \\ \hline PLO \\ \hline WNO 1 \end{array} $	030214067 60 030214068 60 030214069 59 Description	.77 59.17 .00 58.33 .23 57.50	80.00 80.00 80.00	80.00 80.00 80.00	S S S	S S	E E E	E E E	
LEADNING	$ \begin{array}{c ccc} 69 & 18 \\ \hline 70 & 18 \\ \hline F = Excellent \\ G = Good \\ S = Satisfy \\ F = Fail \\ \hline PLO \\ \hline VNO 1 \end{array} $	030214068 60 030214069 59 Description	.00 58.33 .23 57.50	80.00 80.00	80.00 80.00	S S	S S	E	E	
LEADNING	7018 $E = Excellent$ $G = Good$ $S = Satisfy$ $F = Fail$	030214069 59 Description	.23 57.50	80.00	80.00	S	S	E	E	
LEADNING	E = Excellent $G = Good$ $S = Satisfy$ $F = Fail$ PLO	Description								
LEARNING	E = Excellent $G = Good$ $S = Satisfy$ $F = Fail$ PLO	Description								
LEARNING	G = Good $S = Satisfy$ $F = Fail$ PLO	Description								
	S = Satisfy $F = Fail$ PLO	Description								
LEADNING	PLO	Description	1							
	PLO	Description			DI O A agoag	mont Dubrie				
OUTCOMES		Description	Evcelle	nt	PLO Assess	ment Kubric		Satisf	×7	Fail
			x > 80	0	70 <	x < 80		55 < x <	y 5 70	r < 55
ANALISIS	KNO-1	Able to	Students be ab	ole to	Students be	able to	Studer	nts be able	e to	Students be able to
		demonstrate	demonstrate		demonstrat	e	demo	nstrate		Demonstrate
		mathematical	mathematical	l	mathemati	cal	mathe	ematical		mathematical
		knowledge and	knowledge in	the	knowledge	in the first-	know	ledge in t	the first-	knowledge in the first-
		mathematical	first-order lin	ear of	order linea	r of PDEs,	order	linear of	PDEs,	order linear of PDEs,
		insight	PDEs, the sec	cond-	the second	-order linear	the se	cond-ord	ler linear	the second-order linear
			order linear o	of	of PDEs, th	ne wave	of PD	Es, the w	vave	of PDEs, the wave
			PDEs, the wa	ive	equation an	nd the heat	equati	ion and th	he heat	equation and the heat
:			equation and	the	equation w	ith score at	equati	ion with s	score at	equation with score less
			heat equation	with	least 70 and	less than 80.	least 5	55 and less	s than 70.	than 55.
			score at least 8	30.		11 .	G (1	.1 11		
	KNO-2	Able to identify	Student be able	e to	Student be a	ible to	Studer	nt be able	to	Student be able to
		and explain the	identify the	of	identify the	e tio of	identi	ity the	f	identify the
		characteristics	mathematical		mothemati	al problem	mothe	motical r	n Problom	mathematical problem
		01 mothematical	problem in th	a first	in the first	order linear	in the	first ord	or linear	in the first order linear
		nathematical	order linear	of	of PDFs t	he second-	of PD	For the o	econd_	of PDFs the second-
		problems	PDFs the sec	cond_	order linea	r of PDFs	order	linear of	PDFs	order linear of PDFs
			order linear o	onu- of	the wave e	nuation and	the we	ave equat	tion and	the wave equation and
			PDEs the wa	ive	the heat eq	uation and	the he	eat equati	on and	the heat equation and
			PDEs, the sec order linear o	cond- of	order linea the wave e	r of PDEs, quation and	order the wa	linear of ave equation	PDEs, tion and	order linear of PDEs, the wave equation and the heat equation and

		equation and the heat equation and explain the characteristics of mathematical problems in the first- order linear of PDEs, the second- order linear of PDEs, the wave equation and the heat equation with score at least 80.	explain the characteristics of mathematical problems in the first-order linear of PDEs, the second- order linear of PDEs, the wave equation and the heat equation with score at least 70 and less than 80	explain the characteristics of mathematical problems in the first-order linear of PDEs, the second- order linear of PDEs, the wave equation and the heat equation with score at least 55 and less than 70	explain the characteristics of mathematical problems in the first-order linear of PDEs, the second- order linear of PDEs, the wave equation and the heat equation with score less than 55.
SKI-2	Able to apply the basic principles of mathematics to solve simple* mathematical problems.	Student be able to implement basic principle of mathematics to solve the first-order linear of PDEs, second- order linear of PDEs, wave equation and heat equation with score at least 80.	Student be able to implement basic principle of mathematics to solve the first-order linear of PDEs, second-order linear of PDEs, wave equation and heat equation with score at least 70 and less than 80.	Student be able to implement basic principle of mathematics to solve the first-order linear of PDEs, second-order linear of PDEs, wave equation and heat equation with score at least 55 and less than 70.	Student be able to implement basic principle of mathematics to solve the first-order linear of PDEs, second-order linear of PDEs, wave equation and heat equation with score less than 55.
COM-3	Able to solve mathematical problems using technology	Student be able to solve mathematical problem in the first- order linear of PDEs, second-order linear of PDEs, wave equation and	Student be able to solve mathematical problem in the first-order linear of PDEs, second-order linear of PDEs, wave equation and heat equation using	Student be able to solve mathematical problem in the first-order linear of PDEs, second-order linear of PDEs, wave equation and heat equation using	Student be able to solve mathematical problem in the first-order linear of PDEs, second-order linear of PDEs, wave equation and heat equation using

		heat equation	n using	technologiet 7	ology with	h score at	technol	ogy with score at	technology with score	1 7
		technology w	vith	least /	0 and less	than 80	least 55	and less than 70.	less than 55	
		score at least 8	80.							
	l l]
		_								
				CLA	ASSICAL V	ALUE OF PI	LO			
				KNO-1	KNO-2	SKI-2	COM-3			
			Max	89.31	89.50	88.00	88.00			
			Rat	66.66	65.36	82.20	82.20			
		-	Min	49.23	46.67	75.00	75.00			
			_	ACHIE			F PLO			
		-	E	5.00	4.00	69.00	69.00			
			G	18.00	10.00	1.00	1.00			
			5	42.00 5.00	45.00	0.00	0.00			
				70.00	70.00	70.00	70.00			
		-				RCENTAGE	OF PLO			
					(%	6)				
			E	7.14	5.71	98.57	98.57			
			G	25.71	22.86	1.43	1.43			

		problem specifically in the wave and heat equation. They also have problem to explain the characteristic of mathematical problem in
		the wave and heat equation.
RECOMMENDATIO		Several recommendations based on the last course of partial differential equation for better course in the future are as follow:
N FOR FUTURE		1. Motivate the students more in identifying the characteristic of the wave and heat equation, explaining the characteristics of
LEARNING		mathematical problems in the wave and heat equation. They have to practice more in implementing basic principle of mathematics
	:	to solve the wave and heat equation. Beside the presentation of the materials, the students should be asked to share their opinion in class.
		This should extend the students understanding better and force them to read thoroughly
		2. Several products by the students can be extended and develop more for students own portfolios
RECOMMEDATION		NA
FOR INSTITUTION	•	

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI SURABAYA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA

www.tuv.com ID 9108650021

DOCUMENT OF ODD SEMESTER MIDTERM EXAMINATION **ACADEMIC YEAR 2021/2022**

-	-	
Course/Code	:	Partial Differential Equation
Lecturers	:	Rudianto Artiono, M.Si
Program/Class	:	S1/2019E
Date and Time	:	Tuesday, 12 Oktober 2021
Duration	:	100 minutes
Туре	:	Closed

- 1. Write your answers on a sheet of paper with identification on each sheet.
- 2. Avoid using a pencil in writing answers.
- 3. Photograph/scan your answer sheet so that your answers can be read properly.
- 4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: NIM_NAMA.
- 5. Work independently without any resources but yourself
 - Determine the lowest order partial differential equation whose solution is a function of the following 1. two variables
 - a. u = f(x ct) + g(x + ct), f and g are arbitrary functions
 - b. $z = e^{ax+by}$, a and b are arbitrary constants.

(Score 20)

2. Determine the general solution of the following first-order PDE

$$z_x - 2z_y = 3x^2\sin(y + 2x)$$

(Score 20)

3. Find the general solution of the following PDE

$$5\frac{\partial z}{\partial x} + 4\frac{\partial z}{\partial y} + z = x^3 + 2e^{3y}$$

(Score 20)

4. Determine the classification and the general solution of the following second-order PDE

$$z_{xx} - 2z_{xy} + z_{yy} = 4e^{y - 3x}$$

(Score 20)

5. Determine the classification and the general solution of the following second-order PDE

$$x^2 z_{xx} - y^2 z_{yy} = xy$$

(Score 20)

-----Good Luck-----

Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER MIDTERM EXAMINATION

Examination Subjects

: Partial Differential Equation

Lectures

: Team

Program

: Mathematics

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to solve first-order linear partial different equation	Determine the lowest order partial differential equation whose solution is a function of the following two variables a. $u = f(x - ct) + g(x + ct)$, f and g are arbitrary functions b. $z = e^{ax+by}$, a and b are arbitrary constants.	 Find the second partial derivative respect to Ux and Ut Find the second partial derivative respect to Uxx and Utt Substitute each other 	C4	20
2.	Able to determine the solution of a first-order quasilinear inhomogeneous PDP using the Cauchy method.	Determine the general solution of the following first- order PDE $z_x - 2z_y = 3x^2 \sin(y + 2x)$	 Find the parameter A, B, and C Substitute into Zh to find the homogen solution Find the particular solution Rearrange the solution to get the general solution 	C4	20
3.	Able to determine the solution of a first-order quasilinear inhomogeneous PDP using the Cauchy method.	Find the general solution of the following PDE $5\frac{\partial z}{\partial x} + 4\frac{\partial z}{\partial y} + z = x^3 + 2e^{3y}$	 Find the parameter A, B, and C Substitute into Zh to find the 1omogeny solution Find the particular solution 	C5	20

www.tuv.com ID 9108650021

Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

			•	Rearrange the solution to get the general solution		
4	Able to determine the general solution of the second-order PDE using symbolic equations	Determine the classification and the general solution of the following second-order PDE $z_{xx} - 2z_{xy} + z_{yy} = 4e^{y-3x}$	•	Find the homogen solution through factorization Find the particular solution Rearrange the solution to get the general solution	C4	20
5	Able to determine the general solution of the second -order PDE using symbolic equations	Determine the classification and the general solution of the following second-order PDE $x^2 z_{xx} - y^2 z_{yy} = xy$	•	Find the homogen solution through factorization Find the particular solution Rearrange the solution to get the general solution	C4	20

(25)

DOCUMENT OF EVEN SEMESTER FINAL EXAMINATION ACADEMIC YEAR OF 2021/2022

Course	: Persamaan Diferensial Parsial
Lecturer	: Team
Program/Class	: S1 Mathematics/2019
Date and Time	: Tuesday, 14 Desember 2021
Duration	: 100 minutes
Туре	: Closed

1. Write your answers on a sheet of paper with **identification** on each sheet.

- 2. Avoid using a pencil in writing answers.
- 3. Photograph/scan your answer sheet so that your answers can be read properly.
- 4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: **NIM_NAMA**.
- 5. Work independently without any resources but yourself

Complete all of the following questions.

1. Solve the following second order differential equations

a.
$$z_{xx} - 5z_{xy} + 6z_{yy} = e^{x+y}$$
 (15)

b.
$$z_{xx} + z_{xy} - 6z_{yy} = \cos(2x + y)$$
 (15)

c.
$$z_{xx} - z_{yy} + 2z_x + 1 = y^2 + 2\sin(2x + y) - x^2y$$
 (20)

- 2. Determine the solution of the wave equation with the following Dirichlet condition (25) PDE $: U_{tt} = 25U_{xx}$ 0 < x < 3, t > 0Boundary Condition : U(0,t) = U(L,t) = 0Initial Condition $: U(x,0) = \frac{1}{4}\sin \pi x$
- 3. Prove that

$$U(x,t) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi}{l}x\right) e^{-k\left(\frac{n\pi}{l}\right)^2 t}$$

with $A_n = \frac{2}{l} \int_{0}^{l} \sin\left(\frac{n\pi}{l}x\right) \phi(x) dx$

is a solution of the heat equation with the following Dirichlet condition PDE $: U_t = kU_{xx}$ 0 < x < L, t > 0Boundary Condition : U(0,t) = U(L,t) = 0Initial Condition $: U(x,0) = \phi(x)$.

 $U_t(x, 0) = 10 \sin 2\pi x$

----- Good Luck ------

Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

`BLUE PRINT OF ODD SEMESTER FINAL EXAMINATION

Examination Subjects

: Partial Differential Equation

Lectures

: Team

Program

: Mathematics

No	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to classify two- variable almost-linear PDP and to solve two- variable almost-linear PDP	Solve the following second order differential equations a. $z_{xx} - 5z_{xy} + 6z_{yy} =$ e^{x+y} b. $z_{xx} + z_{xy} - 6z_{yy}$ = cos cos (2x + y) c. $z_{xx} - z_{yy} + 2z_x + 1$ $= y^2 + 2 sin sin (2x + y)$ $- x^2 y$	Determine each parameter then solve the equation	C3	15 15 20
2.	Able to solve the wave equation along with the characteristics of the solution and its application	Determine the solution of the wave equation with the following Dirichlet condition <i>PDE</i> : $U_{tt} = 25U_{xx}, 0 < x < 3, t$ > 0 <i>Boundary Condition</i> : U(0,t) = U(L,t) = 0 <i>Initial Condition</i> : $U(x,0) = \frac{1}{4}sin sin \pi x$ $U_t(x,0) = 10 sin sin 2\pi x$	 Use the separation variable Find the solution of characteristics equation Use the Fourier transform Find the solution from the Fourier 	C4	25
3.	Able to solve the heat equation along with the	Prove that	• Use the separation variable	C4	25

Kampus Ketintang, Jalan Ketintang, Surabaya 60231

Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

characteristics of solution and application	the its	$U(x,t)$ $= \sum_{n=1}^{\infty} A_{n}$ sin sin $\left(\frac{n\pi}{l}x\right) e^{-k\left(\frac{n\pi}{l}\right)^{2}t}$ with A_{n} $= \frac{2}{l} \int_{0}^{l}$ sin sin $\left(\frac{n\pi}{l}x\right) \phi(x) dx$ is a solution of the heat equation with the following Dirichlet condition $PDE:$ $U_{t} = kU_{xx}, 0 < x < L,$ $t > 0$ Boundary Condition: $U(0,t) = U(L,t) = 0$ Initial Condition: $U(x,0) = \phi(x)$	 Find the solution of characteristics equation Use the Fourier transform Find the solution from the Fourier 	
		$U(x,0) = \phi(x)$		

