MODULE PORTFOLIO

ODD SEMESTER ACADEMIC YEAR 2020/2021

MODULE NAME		Partial Differential Equation	LECTURER:
MODULE CODE		4420103110	
CLASS		2019	
SEMESTER		3	
DATE			
COURSE LEARNING OUTCOMES		Knowledge (KNO-1) Demonstrating mathematical knowledge and mathematical insight CLO-1: Demonstrate mathematical knowledge in the first-order linear of PDEs, the sec and the heat equation Knowledge (KNO-2) Identifying and explaining the characteristics of mathematical pro CLO-2: Identify the characteristic of mathematical problem in the first-order linear of PD equation and the heat equation CLO-3: Explain the characteristics of mathematical problems in the first-order linear of PDEs, the second-order linear of PDEs, the wave equatio Skill (SKI-2) Applying the basic principles of mathematics to solve simple* mathematic CLO-4: Implement basic principle of mathematics to solve the first-order linear of PDEs and heat equation. Competences (COM-3) Solving mathematical problems using technology CLO-5: Solve mathematical problem in the first-order linear of PDEs, second-order line using technology.	d -order linear of PDEs, the wave equation , the second-order linear of PDEs, the wave and the heat equation problems. econd-order linear of PDEs, wave equation of PDEs, wave equation and heat equation
LEARNING STRATEGIES		Lectures are carried out by activating students with the following strategies: Lectures. Discussions. Practices. Presentations. and Group Assignments	
ASSESSMENT		The assessment carried out during the lecture includes the following three components. 1. Assignment (Quiz and Presentation)	

2. Midterm Exam (UTS)
 3. Final Exam (UAS)

1. Assignment (Tugas)

\checkmark Assignments were given twice in one semester, before UTS (a quiz) and after UTS (a presentation)The quiz was an independent/individual task in the form of a description of the materials that have been discussed before the UTSThe quiz was held in the classroom for 100 minutesThe presentation was a group assignment in the form of a group presentation about the materials to be discussed after the UTS.Each group presented one material while the other groups provided an assessment of the progressing group according to the Presentation Assessment Rubric
\checkmark The assignment was carried out to see the achievements of the PLO and CLO which are in accordance with the characteristics of the ordinary differential equation module

2. Midterm Exam (UTS)

\checkmark UTS was held at the 8th meeting
\checkmark UTS was carried out in the classroom with an implementation time of 100 minutes according to the module schedule
\checkmark The UTS was carried out to see the achievements of the PLO and CLO which are in accordance with the characteristics of the ordinary differential equation module

3. Final Exam (UAS)

\checkmark UAS was held at the 16th meeting
\checkmark UAS was carried out in the classroom with an implementation time of 100 minutes which follows the UAS implementation schedule of the department
The UAS was carried out to see the achievements of the PLO and CLO which are in accordance with the characteristics of the ordinary differential equation module

Assessmen Plan					
PDE	KNO-1	KNO-2	SKI-2	COM-3	
CLO-1	Tugas, UTS, UAS				
CLO-2		Tugas, UTS, UAS			

	9	18030214006	70.15	69.00	84.00	84.00	G	S	E	E
	10	18030214010	65.23	63.50	86.00	86.00	S	S	E	E
	11	18030214011	69.77	68.50	85.00	85.00	S	S	E	E
	12	18030214012	59.23	57.00	86.00	86.00	S	S	E	E
	13	18030214016	66.92	65.17	88.00	88.00	S	S	E	E
	14	18030214017	75.00	74.17	85.00	85.00	G	G	E	E
	15	18030214018	77.92	77.33	85.00	85.00	G	G	E	E
	16	18030214019	74.00	73.17	84.00	84.00	G	G	E	E
	17	18030214020	75.92	75.00	87.00	87.00	G	G	E	E
	18	18030214021	77.08	76.33	86.00	86.00	G	G	E	E
	19	18030214025	66.00	64.67	82.00	82.00	S	S	E	E
	20	18030214026	67.77	66.50	83.00	83.00	S	S	E	E
	21	18030214027	67.77	66.50	83.00	83.00	S	S	E	E
	22	18030214033	54.92	52.83	80.00	80.00	F	F	E	E
	23	18030214034	59.08	57.17	82.00	82.00	S	S	E	E
	24	18030214035	65.77	64.33	83.00	83.00	S	S	E	E
	25	18030214036	79.31	78.67	87.00	87.00	G	G	E	E
	26	18030214040	57.38	55.33	82.00	82.00	S	S	E	E
	27	18030214046	61.08	59.17	84.00	84.00	S	S	E	E
	28	18030214047	74.62	73.83	84.00	84.00	G	G	E	E
	29	18030214048	88.08	88.33	85.00	85.00	E	E	E	E
	30	18030214052	79.54	78.83	88.00	88.00	G	G	E	E
	31	18030214053	89.31	89.50	87.00	87.00	E	E	E	E
	32	18030214054	80.23	79.83	85.00	85.00	E	G	E	E
	33	18030214058	68.00	66.83	82.00	82.00	S	S	E	E
	34	18030214060	66.38	64.83	85.00	85.00	S	S	E	E
	35	18030214064	58.62	56.50	84.00	84.00	S	S	E	E
	36	18030214065	60.15	58.17	84.00	84.00	S	S	E	E
	37	18030214066	59.46	57.33	85.00	85.00	S	S	E	E

	38	16030214009	80.00	80.00	80.00	80.00	E	E	E	E
	39	17030214029	49.23	46.67	80.00	80.00	F	F	E	E
	40	18030214001	74.62	74.17	80.00	80.00	G	G	E	E
	41	18030214002	58.46	56.67	80.00	80.00	S	S	E	E
	42	18030214003	75.38	75.00	80.00	80.00	G	G	E	E
	43	18030214007	69.23	68.33	80.00	80.00	S	S	E	E
	44	18030214008	60.77	59.17	80.00	80.00	S	S	E	E
	45	18030214009	79.23	79.17	80.00	80.00	G	G	E	E
	46	18030214013	78.85	78.75	80.00	80.00	G	G	E	E
	47	18030214014	64.62	63.33	80.00	80.00	S	S	E	E
	48	18030214015	66.54	65.42	80.00	80.00	S	S	E	E
	49	18030214022	76.15	75.83	80.00	80.00	G	G	E	E
	50	18030214023	73.85	73.33	80.00	80.00	G	G	E	E
	51	18030214029	55.38	53.33	80.00	80.00	S	F	E	E
	52	18030214030	67.69	66.67	80.00	80.00	S	S	E	E
	53	18030214031	58.46	56.67	80.00	80.00	S	S	E	E
	54	18030214032	65.38	64.17	80.00	80.00	S	S	E	E
	55	18030214037	66.15	65.00	80.00	80.00	S	S	E	E
	56	18030214038	63.08	61.67	80.00	80.00	S	S	E	E
	57	18030214039	61.54	60.00	80.00	80.00	S	S	E	E
	58	18030214044	49.23	46.67	80.00	80.00	F	F	E	E
	59	18030214045	55.38	53.33	80.00	80.00	S	F	E	E
	60	18030214050	50.77	48.33	80.00	80.00	F	F	E	E
	61	18030214051	60.00	58.33	80.00	80.00	S	S	E	E
	62	18030214055	60.00	58.33	80.00	80.00	S	S	E	E
	63	18030214056	60.77	59.17	80.00	80.00	S	S	E	E
	64	18030214057	58.46	56.67	80.00	80.00	S	S	E	E
	65	18030214061	65.00	63.75	80.00	80.00	S	S	E	E
	66	18030214062	60.77	59.17	80.00	80.00	S	S	E	E

		problem specifically in the wave and heat equation. They also have problem to explain the characteristic of mathematical problem in the wave and heat equation.
RECOMMENDATIO N FOR FUTURE LEARNING	Several recommendations based on the last course of partial differential equation for better course in the future are as follow: 1. Motivate the students more in identifying the characteristic of the wave and heat equation, explaining the characteristics of mathematical problems in the wave and heat equation. They have to practice more in implementing basic principle of mathematics to solve the wave and heat equation. Beside the presentation of the materials, the students should be asked to share their opinion in class. This should extend the students understanding better and force them to read thoroughly	
RECOMMEDATION FOR INSTITUTION	$:$	NA

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKANTINGGI
Kampus Ketintang Jalan Ketintang, Gedung 88 Surabaya 60231

Management System

DOCUMENT OF ODD SEMESTER MIDTERM EXAMINATION ACADEMIC YEAR 2021/2022

Course/Code	$:$	Partial Differential Equation
Lecturers	$:$	Rudianto Artiono, M.Si
Program/Class	$:$	S1/2019E
Date and Time	$:$	Tuesday, 12 Oktober 2021
Duration	$:$	100 minutes
Type	$:$	Closed

1. Write your answers on a sheet of paper with identification on each sheet.
2. Avoid using a pencil in writing answers.
3. Photograph/scan your answer sheet so that your answers can be read properly.
4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: NIM_NAMA.
5. Work independently without any resources but yourself
6. Determine the lowest order partial differential equation whose solution is a function of the following two variables
a. $\quad u=f(x-c t)+g(x+c t), f$ and g are arbitrary functions
b. $\quad z=e^{a x+b y}, a$ and b are arbitrary constants.
(Score 20)
7. Determine the general solution of the following first-order PDE

$$
z_{x}-2 z_{y}=3 x^{2} \sin (y+2 x)
$$

(Score 20)
3. Find the general solution of the following PDE

$$
5 \frac{\partial z}{\partial x}+4 \frac{\partial z}{\partial y}+z=x^{3}+2 e^{3 y}
$$

(Score 20)
4. Determine the classification and the general solution of the following second-order PDE

$$
z_{x x}-2 z_{x y}+z_{y y}=4 e^{y-3 x}
$$

5. Determine the classification and the general solution of the following second-order PDE

$$
x^{2} z_{x x}-y^{2} z_{y y}=x y
$$

BLUE PRINT OF ODD SEMESTER MIDTERM EXAMINATION

Examination Subjects
Lectures
Program
: Partial Differential Equation
: Team
: Mathematics

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to solve first-order linear partial different equation	Determine the lowest order partial differential equation whose solution is a function of the following two variables a. $\quad u=f(x-c t)+g(x+c t)$, f and $g \quad$ are arbitrary functions b. $z=e^{a x+b y}, a$ and b are arbitrary constants.	- Find the second partial derivative respect to Ux and Ut - Find the second partial derivative respect to Uxx and Utt - Substitute each other	C4	20
2.	Able to determine the solution of a first-order quasilinear inhomogeneous PDP using the Cauchy method.	Determine the general solution of the following firstorder PDE $z_{x}-2 z_{y}=3 x^{2} \sin (y+2 x)$	- Find the parameter A, B, and C - Substitute into Zh to find the homogen solution - Find the particular solution - Rearrange the solution to get the general solution	C4	20
3.	Able to determine the solution of a first-order quasilinear inhomogeneous PDP using the Cauchy method.	Find the general solution of the following PDE $5 \frac{\partial z}{\partial x}+4 \frac{\partial z}{\partial y}+z=x^{3}+2 e^{3 y}$	- Find the parameter A, B, and C - Substitute into Zh to find the 1omogeny solution - Find the particular solution	C5	20

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI
 UNIVERSITAS NEGERI SURABAYA
 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
 JURUSAN MATEMATIKA

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

			- Rearrange the solution to get the general solution		
4	Able to determine the general solution of the second-order PDE using symbolic equations	Determine the classification and the general solution of the following second-order PDE $z_{x x}-2 z_{x y}+z_{y y}=4 e^{y-3 x}$	- Find the homogen solution through factorization - Find the particular solution - Rearrange the solution to get the general solution	C4	20
5	Able to determine the general solution of the second -order PDE using symbolic equations	Determine the classification and the general solution of the following second-order PDE $x^{2} z_{x x}-y^{2} z_{y y}=x y$	- Find the homogen solution through factorization - Find the particular solution - Rearrange the solution to get the general solution	C4	20

DOCUMENT OF EVEN SEMESTER FINAL EXAMINATION ACADEMIC YEAR OF 2021/2022

Course	$:$ Persamaan Diferensial Parsial
Lecturer	$:$ Team
Program/Class	$:$ S1 Mathematics/2019
Date and Time	$:$ Tuesday, 14 Desember 2021
Duration	$: 100$ minutes
Type	$:$ Closed

1. Write your answers on a sheet of paper with identification on each sheet.
2. Avoid using a pencil in writing answers.
3. Photograph/scan your answer sheet so that your answers can be read properly.
4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: NIM_NAMA.
5. Work independently without any resources but yourself

Complete all of the following questions.

1. Solve the following second order differential equations
a. $z_{x x}-5 z_{x y}+6 z_{y y}=e^{x+y}$
b. $z_{x x}+z_{x y}-6 z_{y y}=\cos (2 x+y)$
c. $z_{x x}-z_{y y}+2 z_{x}+1=y^{2}+2 \sin (2 x+y)-x^{2} y$
2. Determine the solution of the wave equation with the following Dirichlet condition

PDE

$$
\begin{equation*}
: U_{t t}=25 U_{x x} \quad 0<x<3, \quad t>0 \tag{25}
\end{equation*}
$$

Boundary Condition : $U(0, t)=U(L, t)=0$
Initial Condition $: U(x, 0)=\frac{1}{4} \sin \pi x$

$$
\begin{equation*}
U_{t}(x, 0)=10 \sin 2 \pi x \tag{25}
\end{equation*}
$$

3. Prove that

$$
\begin{aligned}
U(x, t) & =\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right) e^{-k\left(\frac{n \pi}{l}\right)^{2} t} \\
\text { with } A_{n} & =\frac{2}{l} \int_{0}^{l} \sin \left(\frac{n \pi}{l} x\right) \phi(x) d x
\end{aligned}
$$

is a solution of the heat equation with the following Dirichlet condition
PDE $\quad: U_{t}=k U_{x x} \quad 0<x<L, \quad t>0$
Boundary Condition : $U(0, t)=U(L, t)=0$
Initial Condition $: U(x, 0)=\phi(x)$.

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI
 UNIVERSITAS NEGERI SURABAYA
 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
 JURUSAN MATEMATIKA

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/
`BLUE PRINT OF ODD SEMESTER FINAL EXAMINATION

Examination Subjects : Partial Differential Equation
Lectures :Team
Program : Mathematics

No	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to classify twovariable almost-linear PDP and to solve twovariable almost-linear PDP	Solve the following second order differential equations $\text { a. } z_{x x}-5 z_{x y}+6 z_{y y}=$ e^{x+y} b. $z_{x x}+z_{x y}-6 z_{y y}$ $=\cos \cos (2 x+y)$ $\text { c. } z_{x x}-z_{y y}+2 z_{x}+1$ $\begin{gathered} =y^{2}+2 \sin \sin (2 x+y) \\ -x^{2} y \end{gathered}$	Determine each parameter then solve the equation	C3	15 15 20
2.	Able to solve the wave equation along with the characteristics of the solution and its application	Determine the solution of the wave equation with the following Dirichlet condition PDE: $\begin{gathered} U_{t t}=25 U_{x x}, 0<x<3, t \\ >0 \end{gathered}$ Boundary Condition: $U(0, t)=U(L, t)=0$ Initial Condition: $\begin{gathered} U(x, 0)=\frac{1}{4} \sin \sin \pi x \\ U_{t}(x, 0)=10 \sin \sin 2 \pi x \end{gathered}$	- Use the separation variable - Find the solution of characteristics equation - Use the Fourier transform - Find the solution from the Fourier	C4	25
3.	Able to solve the heat equation along with the	Prove that	- Use the separation variable	C4	25

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

