MODULE PORTFOLIO

ODD SEMESTER ACADEMIC YEAR 2020/2021

MODULE NAME		Elementary Number Theory	LECTURER:
MODULE CODE		: 4420102136	Team
CLASS		2020	
SEMESTER		3	
DATE			
COURSE LEARNING OUTCOMES	Programme Learning Outcomes (PLO) Knowledge (KNO-1): Demonstrating mathematical knowledge and mathematical insight. CLO-1: Identify and explain solving simple problems using the concepts and properties of division, number base, prime numbers, GCD and LCM, congruence, residual system, Euler's theorem, linear congruence, simultaneous linear congruence system, congruence system linear CLO-2: Capable of thinking in a structured manner, reasoning, proving simply the characteristics of division, number base, prime numbers, GCD and LCM, congruence, residual system, Euler's theorem, linear congruence, simultaneous linear congruence system, linear congruence system. Skill (SKI-1): Formulating and solving fundamental mathematical problems. CLO-3: Develop some mathematical models of a problems by using concept of divisibility, congruence, and some theorem. Competences (COM-1): Proving mathematical statements by various methods. CLO-4: Proving some properties of congruence		

		Correlation Between PLO and CLO Elementary Number Theory					
			Elementary Number Theory	KNO-1	SKI-1	COM-1	
			CLO-1	\checkmark			
			CLO-2	\checkmark			
			CLO-3		\checkmark		
			CLO-4			$\sqrt{ }$	
LEARNING STRATEGIES	Lectures are carried out by activating students with the following strategies: Lectures. Discussions. Practices. Presentations. And Group Assignments						
ASSESSMENT	The assessment carried out during the lecture includes the following three components. 1. Assignment (Assignment and final project) 2. Midterm Exam (UTS) 3. Final Exam (UAS) 1. Assignment - Assignments were given every two weeks in one semester - The assignments and final project was carried out to see the achievements of the PLO and CLO which are in accordance with the characteristics of the Elementary Number Theory module 2. Midterm Exam (UTS) - UTS was held at the $8^{\text {th }}$ meeting - UTS was carried out in the classroom with an implementation time of 100 minutes according to the module schedule - The UTS was carried out to see the achievements of the PLO and CLO which are in accordance with the characteristics of Elementary Number Theory module 3. Final Exam (UAS) - UAS was held at the $16^{\text {th }}$ meeting - UAS was carried out in the classroom with an implementation time of 100 minutes which follows the UAS implementation schedule of the department						

- The UAS was carried out to see the achievements of the PLO and CLO which are in accordance with the characteristics of the Elementary Number Theory module

Assessmen Plan

Elementary Number Theory	KNO-1	SKI-1	COM-1
CLO-1	Assignments, UTS, UAS		
CLO-2	Assignments, UTS, UAS		
CLO-3		Assignments and UAS	
CLO-4			Assignments

Weight of Test Ability

Elementary Number Theory	KNO-1	SKI-1	COM-1
Assignments	30%	40%	30%
UTS	50%	50%	-
UAS	50%	50%	-

LEARNING OUTCOMES ANALYSIS		PLO Assessment Rubric					
		PLO	Description	Excellent $x \geq 80$	$\begin{gathered} \text { Good } \\ 70 \leq x<80 \\ \hline \end{gathered}$	$\begin{gathered} \text { Satisfy } \\ 55 \leq x<70 \\ \hline \end{gathered}$	$\begin{gathered} \text { Fail } \\ x<55 \\ \hline \end{gathered}$
		KNO-1	Demonstrating mathematical knowledge and mathematical insight	Student be able to identify and explain solving simple problems using the concepts and properties of division, number base, prime numbers, GCD and LCM, congruence, residual system, Euler's theorem, linear congruence, simultaneous linear congruence system, congruence system linear with score at least 80 .	Student be able to identify and explain solving simple problems using the concepts and properties of division, number base, prime numbers, GCD and LCM, congruence, residual system, Euler's theorem, linear congruence, simultaneous linear congruence system, congruence system linear with score at least 70 and less than 80 .	Student be able to identify and explain solving simple problems using the concepts and properties of division, number base, prime numbers, GCD and LCM, congruence, residual system, Euler's theorem, linear congruence, simultaneous linear congruence system, congruence system linear with score at least 55 and less than 70.	Student be able to identify and explain solving simple problems using the concepts and properties of division, number base, prime numbers, GCD and LCM, congruence, residual system, Euler's theorem, linear congruence, simultaneous linear congruence system, congruence system linear with score less than 55.
		SKI-1	Formulating and solving fundamental mathematical problems	Student be able to develop some mathematical models of a problems by using concept of divisibility, congruence, and some theorem with score at least 80 .	Student be able to develop some mathematical models of a problems by using concept of divisibility, congruence, and some theorem with score at least 70 and less than 80 .	Student be able to develop some mathematical models of a problems by using concept of divisibility, congruence, and some theorem with score at least 55 and less than 70	Student be able to develop some mathematical models of a problems by using concept of divisibility, congruence, and some theorem with score less than 55.

(200,00

| PERFORMANCE
 ANALYSIS | |
| :--- | :--- | :--- |
| RECOMMENDATI
 ON FOR FUTURE
 LEARNING | $:$Several recommendations based on the last course of elementary number theory for better course in the future are as follow:
 1. Motivate the students more to find ideas of theorem by themselves. The students should be asked to share their opinion in class.
 2. Several assignments by the students can be extended and developed. |
| RECOMMEDATIO
 N FOR
 INSTITUTION | $:$ NA |

DOCUMENT OF ODD SEMESTER FINAL EXAMINATION ACADEMIC YEAR OF 2020/2021

Course/Code	$:$ Elementary Number Theory
Lecturer	$:$ Team
Program/Class	$:$ S1/2019 D and E
Date and Time	$:$ Monday, January 4,2020
Duration	$: 100$ minutes
Type	$:$ Closed

1. Write answer you on sheet paper accompanied
2. Avoid use pencil in write answer.
3. Photo /scan sheet answer you like that so that answer you could read with good.
4. Sort answer from number about smallest and upload answers you in one file (pdf) with filename: NIM_NAMA.
5. Work on by independent without any resources but yourself.
6. Find the solution of Diophantine equation $754 x+221 y=13$
(Score 15)
7. Prove that $(a n+b)^{m} \equiv b^{m}(\bmod n)$
8. Find the smallest positive integer x if $61!\equiv x-1(\bmod 71)$
9. If this month is May, then find out what is the next 239^{43} month?
10. Find the smallest positive value for this congruence system

$$
\begin{gathered}
x \equiv 1(\bmod 2) \\
2 x \equiv 2(\bmod 5) \\
10 x \equiv 5(\bmod 15)
\end{gathered}
$$

6. Find the solution of this system

$$
\begin{gathered}
x+2 y \equiv 4(\bmod 5) \\
3 x+y+z \equiv 0(\bmod 5) \\
x+y+2 z \equiv 3(\bmod 5)
\end{gathered}
$$

UNESA
KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
JURUSAN MATEMATIKA
Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER FINAL EXAMINATION

Examination Subjects

Lectures

Program
: Elementary Number Theory
: Team
: Mathematics

No	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Using the properties of congruence to solve the specified problem	Find the solution of Diophantine equation $754 x+221 y=13$	- Diophantine rule	C3	15
2.	Proving the congruence properties of numbers	Prove that $(a n+b)^{m} \equiv$ $b^{m}(\bmod n)$	- Congruence properties	C4	15
3.	Solve mathematical problems related to residual systems	Find the smallest positive integer x if $61!\equiv x-$ $1(\bmod 71)$	- Congruence	C4	15
4	Solve mathematical problems related to Euler's theorem	If this month is May, then find out what is the next 23943 month?	- Euler theorem	C4	15
5	Solve mathematical problems related to simultaneous linear congruence systems	Find the smallest positive value for this congruence system $\begin{aligned} x & \equiv 1(\bmod 2) \\ 2 x & \equiv 2(\bmod 5) \\ 10 x & \equiv 5(\bmod 15) \end{aligned}$	- Linear Congruence System	C4	20
6	Determine the solution of mathematical problems related to the linear congruence system	Find the solution of this system $\begin{gathered} x+2 y \equiv 4(\bmod 5) \\ 3 x+y+z \equiv 0(\bmod 5) \\ x+y+2 z \equiv 3(\bmod 5) \end{gathered}$	- Linear Congruence System	C4	20

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI

DOCUMENT OF ODD SEMESTER MIDTERM EXAMINATION ACADEMIC YEAR 2020/2021

Course/Code	$:$	Elementary Number Theory
Lecturer	$:$	Team
Program/Class	$:$	S1/2019 D and E
Date and Time	$:$	Monday, November 2, 2020
Duration	$:$	100 Minutes
Type	$:$	Closed

1. Write your answers on a sheet of paper with identification on each sheet.
2. Avoid using a pencil in writing answers.
3. Photograph/scan your answer sheet so that your answers can be read properly.
4. Sort the answers from the smallest question number and upload your answers in one file (pdf) with the file name: NIM_NAMA.
5. Work independently without any resources but yourself
6. Given x and y are integer. Prove that $2 x+3 y$ can be divided by 17 if and only if $9 x+5 y$ can be divided by 17.
[Score 10]
7. Given $p, q \in \mathbb{Z}, p>0, q>0$. Prove if $p \mid q$ then $p \leq q$.
[Score 10]
8. a. By using Euclid algorithm, find (a, b) if a is 4 last digit number of your student registration and b is 4 last digit number of your phone number. If the first number is 0 then replace with 1 .
[Score 15]
b. Determine an integer x and y such that $a x+b y=(a, b)$.
[Score 10]
9. Find the result of this operation
a. $(710523)_{8}+(54321)_{6}=(\ldots)_{16}$
[Score 10]
b. $(312231)_{3} \times(323412)_{5}=(\ldots)_{7}$
[Score 10]
10. Given $p, q \in \mathbb{Z}$. Prove that $(p, q) .[p, q]=p q$.
[Score 15]
11. Mother ask Dani to buy two kind of fruits, namely mango and apple. Mother gives him money about Rp. 100.000,- to get as many as possible fruits which the number of apple should be bigger than mango. If the price of one mango is Rp. 700,- rupiah and one apple is Rp. 1.300,- then find out how many fruits that Dani can buy.
[Score 20]

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA
 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER MIDTERM EXAMINATION

Examination Subjects

Lectures

Program
: Elementary Number Theory
: Team
: Mathematics

\begin{tabular}{|c|c|c|c|c|c|}
\hline No \& Indicator \& Test \& Key of the answer \& Cognitive Domain \& Score \\
\hline 1. \& Able to solve mathematical problems with the properties of division and division algorithm \& Given \(x\) and \(y\) are integer. Prove that \(2 x+3 y\) can be divided by 17 if and only if \(9 x+5 y\) can be divided by 17. \& \begin{tabular}{l}
- Prove \((\Rightarrow)\) \\
- Prove \((\Longleftarrow)\)
\end{tabular} \& C4 \& 10 \\
\hline 2. \& Able to explain the proof of the division properties \& \begin{tabular}{l}
Given \(\quad p, q \in \mathbb{Z}, p>0, q>\) \\
0 . Prove if \(p \mid q\) then \(p \leq q\).
\end{tabular} \& - By using some theorem in division, it can be proved that if \(p \mid q\) then \(p \leq q\). \& C4 \& 10 \\
\hline 3. \& Able to apply Euclid's algorithm in solving problems \& \begin{tabular}{l}
a) By using Euclid algorithm, find \((a, b)\) if \(a\) is 4 last digit number of your student registration and \(b\) is 4 last digit number of your phone number. If the first number is 0 then replace with 1. \\
b) Determine an integer \(x\) and \(y\) such that \(a x+b y=\) \((a, b)\).
\end{tabular} \& \begin{tabular}{l}
- Arrange the number \(a\) and \(b\) into the \(a x+\) \(b y=(a, b)\) \\
- By using Euclid algorithm, the \((a, b)\) can be determined
\end{tabular} \& C5 \& 15

10

\hline 4 \& Able to represent a number in various bases and their operations \& | Find the result of this operation |
| :--- |
| a) $\begin{aligned} & (710523)_{8}+ \\ & (54321)_{6}=(\ldots)_{16} \end{aligned}$ |
| b) $\begin{aligned} & (312231)_{3} \times \\ & (323412)_{5}=(\ldots)_{7} \end{aligned}$ | \& - Use the role of basis and their operation to find out the solution \& C4 \& 10

10

\hline
\end{tabular}

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

5	Able to solve problems related to the relationship between GCD and LCM	Given $p, q \in \mathbb{Z}$. Prove that $(p, q) \cdot[p, q]=p q$.	•Use some theorem in GCD and LCM 6Able to apply the characteristics of GCD in solving problems	Mother ask Dani to buy two kind of fruits, namely mango and apple. Mother gives him money about Rp. 100.000,- to get as many as possible fruits which the number of apple should be bigger than mango. If the price of one mango is Rp. 700,- rupiah and one apple is Rp. 1.300,- then find out how many fruits that Dani can buy.	Construct the mathematical model from the given question By using GCD, the number of fruit can be determined

