MODULE PORTFOLIO

ODD SEMESTER ACADEMIC YEAR 2019/2020

- The UTS was carried out to see the achievements of the PLO and CLO which are in accordance with the characteristics of the statistics method module

3. Final Exam (UAS)

- UAS was held at the 16 th meeting
- UAS was carried out in the classroom with an implementation time of 100 minutes which follows the UAS implementation schedule of the department
- The UAS was carried out to see the achievements of the PLO and CLO which are in accordance with the characteristics of the analytical geometry courses

Assessmen Plan					
Statistics Method	KNO-2	SKI-2	SKI-4	COM-1	SOC-1
CLO-1	Assignments, UTS, UAS				
CLO-2		Assignments, UTS, UAS			
CLO-3			Assignments, UTS, UAS		
CLO-4				Assignments, UTS, UAS	
CLO-5					Assignments, UTS, UAS

Weight of Test Ability

Statistics Method	KNO-2	SKI-2	SKI-4	COM-1	SOC-1
Assignments	20%	20%	30%	20%	10%
UTS	20%	20%	20%	20%	20%
UAS	20%	20%	30%	20%	10%

		The Calculation of PLO's Weight												
								A	UTS	UAS				
								0,2	0,2	0,2	0,6			
						SK		0,2	0,2	0,2	0,6			
						SK		0,3	0,2	0,3	0,8			
								0,2	0,2	0,2	0,6			
								0,1	0,2	0,1	0,4			
								1	1	1	3			
LEARNING		The Calculation of PLO for each students and the predicate of PLO for each student												
OUTCOMES		NO	NIM	SCORE OF PLO						PREDICATE OF PLO				
		NO	NIN	KNO-2	SKI-2	SKI-4	COM-1	SOC-1		KNO-2	SKI-2	SKI-4	COM-1	SOC-1
		1	18030214024	54,25	54,25	54,18	54,25	54,40		F	F	F	F	F
		2	19030214001	80,63	80,63	81,14	80,63	79,50		E	E	E	E	G
		3	19030214003	71,25	71,25	70,91	71,25	72,00		G	G	G	G	G
		4	19030214005	73,75	73,75	72,73	73,75	76,00		G	G	G	G	G
		5	19030214007	89,63	89,63	89,59	89,63	89,70		E	E	E	E	E
		6	19030214009	94,38	94,38	95,23	94,38	92,50		E	E	E	E	E
		7	19030214011	66,25	66,25	65,91	66,25	67,00		S	S	S	S	S
		8	19030214013	76,88	76,88	77,05	76,88	76,50		G	G	G	G	G
		9	19030214015	75,88	75,88	76,32	75,88	74,90		G	G	G	G	G
		10	19030214017	75,00	75,00	76,36	75,00	72,00		G	G	G	G	G
		11	19030214019	76,88	76,88	77,05	76,88	76,50		G	G	G	G	G
		12	19030214021	90,88	90,88	91,86	90,88	88,70		E	E	E	E	E

	13	19030214023	79,00	79,00	78,45	79,00	80,20	G	G	G	G	E
	14	19030214025	70,00	70,00	68,64	70,00	73,00	G	G	S	G	G
	15	19030214027	80,63	80,63	81,14	80,63	79,50	E	E	E	E	G
	16	19030214029	88,00	88,00	88,27	88,00	87,40	E	E	E	E	E
	17	19030214031	85,13	85,13	86,05	85,13	83,10	E	E	E	E	E
	18	19030214033	81,13	81,13	81,23	81,13	80,90	E	E	E	E	E
	19	19030214035	79,00	79,00	79,55	79,00	77,80	G	G	G	G	G
	20	19030214037	67,13	67,13	66,41	67,13	68,70	S	S	S	S	S
	21	19030214039	76,25	76,25	77,27	76,25	74,00	G	G	G	G	G
	22	19030214041	85,00	85,00	85,00	85,00	85,00	E	E	E	E	E
	23	19030214043	83,13	83,13	84,32	83,13	80,50	E	E	E	E	E
	24	19030214045	75,00	75,00	75,00	75,00	75,00	G	G	G	G	G
	25	19030214047	87,25	87,25	88,55	87,25	84,40	E	E	E	E	E
	26	19030214049	73,00	73,00	71,91	73,00	75,40	G	G	G	G	G
	27	19030214051	80,25	80,25	80,73	80,25	79,20	E	E	E	E	G
	28	19030214053	83,50	83,50	83,36	83,50	83,80	E	E	E	E	E
	29	19030214055	79,88	79,88	80,32	79,88	78,90	G	G	E	G	G
	30	19030214057	74,63	74,63	74,59	74,63	74,70	G	G	G	G	G
	31	19030214059	64,50	64,50	64,64	64,50	64,20	S	S	S	S	S
	32	19030214061	74,00	74,00	73,18	74,00	75,80	G	G	G	G	G
	33	19030214063	57,50	57,50	56,82	57,50	59,00	S	S	S	S	S
	34	19030214065	67,75	67,75	66,18	67,75	71,20	S	S	S	S	G
	35	19030214067	74,38	74,38	73,86	74,38	75,50	G	G	G	G	G
	36	17030214029	86,25	86,25	86,18	86,25	86,40	E	E	E	E	E
	37	19030214002	81,50	81,50	81,64	81,50	81,20	E	E	E	E	E
	38	19030214004	84,63	84,63	84,59	84,63	84,70	E	E	E	E	E
	39	19030214006	83,13	83,13	83,23	83,13	82,90	E	E	E	E	E
	40	19030214008	86,25	86,25	86,18	86,25	86,40	E	E	E	E	E
	41	19030214010	86,25	86,25	86,18	86,25	86,40	E	E	E	E	E

		$\begin{aligned} & \hline \mathrm{G}=\text { Good } \\ & \mathrm{S}=\text { Satisfy } \\ & \mathrm{F}=\text { Fail } \end{aligned}$					
LEARNING OUTCOMES ANALYSIS		PLO Assessment Rubric					
		PLO	Description	Excellent $x \geq 80$	$\begin{gathered} \text { Good } \\ 70 \leq x<80 \\ \hline \end{gathered}$	Satisfy $55 \leq x<70$	$\begin{gathered} \text { Fail } \\ x<55 \end{gathered}$
		KNO-2	Be able to Identify and explain the characteristics of mathematical problems.	Student be able to identify and demonstratate concepts related to basic knowledge of statistics, descriptive statistics which include data presentation, center size, location size, center size, size and distribution, sample space, probability, binomial, normal and t -student probability distribution, sampling distribution, inferential statistics includes hypothesis est, Z test, T test, Anova, correlation, regression and Chi squared with score at least 80 .	Student be able to identify and demonstratate concepts related to basic knowledge of statistics, descriptive statistics which include data presentation, center size, location size, center size, size and distribution, sample space, probability, binomial, normal and t-student probability distribution, sampling distribution, inferential statistics includes hypothesis est, Z test, T test, Anova, correlation, regression and Chi squared with score at least 70 and less than 80.	Student be able to identify and demonstratate concepts related to basic knowledge of statistics, descriptive statistics which include data presentation, center size, location size, center size, size and distribution, sample space, probability, binomial, normal and tstudent probability distribution, sampling distribution, inferential statistics includes hypothesis est, Z test, T test, Anova, correlation, regression and Chi squared with score at least 55 and less than 70.	Student be able to identify and demonstratate concepts related to basic knowledge of statistics, descriptive statistics which include data presentation, center size, location size, center size, size and distribution, sample space, probability, binomial, normal and tstudent probability distribution, sampling distribution, inferential statistics includes hypothesis est, Z test, T test, Anova, correlation, regression and Chi squared with score less than 55.

	SKI-2	Be able to implement basic principles of mathematics to solve simple mathematics problems	Student be able to implement the basic concepts of statistics, descriptive statistics, sampling distribution and inferential statistics and be able to present tasks well and be able to apply them in problem solving through a mathematical approach with score at least 80 .	Student be able to implement the basic concepts of statistics, descriptive statistics, sampling distribution and inferential statistics and be able to present tasks well and be able to apply them in problem solving through a mathematical approach with score at least 70 and less than 80 .	Student be able to implement the basic concepts of statistics, descriptive statistics, sampling distribution and inferential statistics and be able to present tasks well and be able to apply them in problem solving through a mathematical approach with score at least 55 and less than 70	Student be able to implement the basic concepts of statistics, descriptive statistics, sampling distribution and inferential statistics and be able to present tasks well and be able to apply them in problem solving through a mathematical approach with score less than 55.
	SKI-4	Be able to Implement simple mathematical procedures in computer programs.	Student be able to implement the basic concepts of statistics, descriptive statistics, sampling distribution and inferential statistics and be able to present tasks well and be able to apply them in problem solving through a computer approach with score at least 80.	Student be able to implement the basic concepts of statistics, descriptive statistics, sampling distribution and inferential statistics and be able to present tasks well and be able to apply them in problem solving through a computer approach with score at least 70 and less than 80.	Student be able to implement the basic concepts of statistics, descriptive statistics, sampling distribution and inferential statistics and be able to present tasks well and be able to apply them in problem solving through a computer approach with score at least 55 and less than 70	Student be able to implement the basic concepts of statistics, descriptive statistics, sampling distribution and inferential statistics and be able to present tasks well and be able to apply them in problem solving through a computer approach with score less than 55.

COM-1	Be able to Prove mathematical statements by various methods.	Student be able to prove a statement decision using several methods with score at least 80.	Student be able to prove a statement decision using several methods with score at least 70 and less than 80.	Student be able to prove a statement decision using several methods with score at least 55 and less than 70	Student be able to prove a statement decision using several methods with score less than 55.
SOC-1	Be able to Work collaboratively and having social sensitivity (obligations as citizens and towards religion) and being able to bring change to a techno- ecopreneurship community.	Student be able to work collaboratively and submit the assignments on time with score at least 80.	Student be able to work collaboratively and submit the assignments on time with score at least 70 and less than 80.	Student be able to work collaboratively and submit the assignments on time with score at least 55 and less than 70	Student be able to work collaboratively and submit the assignments on time with score less than 55.

| RECOMMENDATI
 ON FOR FUTURE
 LEARNING | $:$Several recommendations based on the last course of analytical geometry for better course in the future are as follow:
 1. Motivate the students more in applying the basic principle of mathematics problem. The students should be asked to share their
 opinion in class. This should extend the students understanding better and force them to read thoroughly
 2. Several products by the students can be extended end develop more for students own portfolios |
| :--- | :--- | :--- |
| RECOMMEDATIO | |
| N FOR
 INSTITUTION | $:$ NA |

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
 UNIVERSITAS NEGERI SURABAYA

 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAMJURUSAN MATEMATIKA
Jalan Ketintang, Gedung C8 Lantai 1, Surabaya 60231
Telepon/Faksimile: +62-31 8297677
Laman: http://matematika.fmipa.unesa.ac.id Surel: matematika@unesa.ac.id
DOCUMENT OF ODD SEMESTER MIDDLE EXAMINATION

ACADEMIC YEAR OF 2021/2022

Course
Methods of Statistics
Lecturer(s) : A'yunin Sofro, Ph.D.
Program/Class of : Mathematics/ 2021 D and E
Test Day/Date : Friday, 15th October 2021
Duration/Period : 100 minutes / 08:00 -09:40
Test Type
: Open Book

Guidlines of the examination:

- Pray before the test.
- Use the black ink to answer the problems.
- Open account GC jam 08:00 to get the exam script at assignment menu
- Upload the statement of integrity at : https://forms.gle/KZ39eudFHRp6nRLs8
- Answer all the question correctly.
- Write down your details (Name, Nim and Class) for each page of your answer papers.
- Submit all the answer papers before 09:50 on Friday, October 15th 2021 on GC
- If you submit more than the due date, it refers that you do not do the exam.
- All of cheating will reduce the final score.

Answer correctly and completely all of the questions

1. Data: $10,214,114,414,414,414,514,514,614,714,714,714,915,115,916,4$
(a) Contruct the boxplot
(b) Calculate the centre of tendency measurement
(c) Calculate the dispersion measurement
2. One researcher reported that the object the research will stay alive with an average of 40 month by doing a strict diet of vitamins and proteins. It is assumed that the lifetime of the object it follows a normal distribution with a standard the deviation is 6.3 months. Determine the probability of life span of research object
(a) more than 32 months
(b) less than 28 months
(c) between 37 and 49 months
3. There is an assumption about the price of apples in the market free area A is Rp $600 \mathrm{~K} /$ box with The standard deviation is IDR 25 K . Departing from this assumption, then it is carried out random sampling of 40 stalls fruit and obtained information that the average is IDR $594 \mathrm{~K} /$ box. Test the assumption of truth above with a alpha 5 percent and with a approach using
(a) significant level
(b) p value
© Good Luck ${ }^{()}$

UNESA

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA
Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER MISTERM EXAMINATION

Examination Subjects	: Methods of Statistics
Lectures	: A'yunin Sofro,Ph.D
Program	$:$ Mathematics

No.	Indicator	Test	Key of the answer	Cognitive Domain	Score
1.	Able to apply the principal of descriptive statistics (CLO-2)	Data : 10.2 14.1 14.4 14.4 14.4 14.5 14.5 14.6 14.7 14.7 14.7 14.9 15.1 15.9 16.4 (a) Contruct the boxplot (b) Calculate the centre of tendency measurement (c) Calculate the dispersion measurement	- Order the data from the minimum to the maximum - Calculate Q1, Q2 dan Q3 - Calculate interquartile Range - Draw the box from Q1, Q2 and Q3 - Find the lower and upper threshold - Find the outlier if it is exist - Determine the centre of tendency measurement, such as modus or median - Determine the dispersion measurement, such as interquartile range	SK-2	30
2.	Able to apply the principal of probability under normal curve (CLO-2)	One researcher reported that the object the research will stay alive with an average of 40 month by doing a strict diet of vitamins and proteins. It is assumed that the lifetime of the object it follows a normal distribution with a standard the deviation is 6.3 months. Determine the probability of life span of research object (a) more than 32 months (b) less than 28 months (c) between 37 and 49 months	- Determine new variable Z from 32 - Find the value of probability more than 32 months - Determine new variable Z from 28 - Find the value of probability less than 28 months - Determine new variable Z from 37 and 49 - Find the value of probability between 37 and 49 months	SK-2	30

Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

3.	Able to identity and apply Z test procedures (CLO-4)	There is an assumption about the price of apples in the market free area A is $R p 600 \mathrm{~K} /$ box with The standard deviation is IDR 25 K . Departing from this assumption, then it is carried out random sampling of 40 stalls fruit and obtained information that the average is IDR $594 \mathrm{~K} / \mathrm{box}$. Test the assumption of truth above with a alpha 5 percent and with a approach using (a) significant level (b) p value	- Determine null hypothesis and its alternative - Determine the significant alpha - Find the critical value - Calculate the calculated Z test from the data - Compare between critical value and calculated Z test - Determine the decision - Interpretation the results - Determine null hypothesis and its alternative - Determine the significant alpha - Calculate the probability from the value of calculated Z test, it is called Pvalue - Compare Pvalue and significant alpha - Determine the decision - Interpretation the results	KNO-2	20

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI SURABAYA

 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAMJURUSAN MATEMATIKA
Jalan Ketintang, Gedung C8 Lantai 1, Surabaya 60231
Telepon/Faksimile: +62-31 8297677
Laman: http://matematika.fmipa.unesa.ac.id Surel: matematika@unesa.ac.id

DOCUMENT OF ODD SEMESTER FINAL EXAMINATION ACADEMIC YEAR OF 2021/2022
 Course : Methods of Statistics
 Lecturer(s) : A'yunin Sofro, Ph.D.
 Program/Class of : Mathematics / 2021 D E
 Test Day/Date : Friday, 17th December 2021
 Duration/Period : 100 minutes / 13:00-14:40
 Test Type : Open Book

Guidlines of final exam:

- Pray before the test.
- Use the black ink to answer the problems.
- Open account GC jam 13:00 to get the final exam script at assignment menu
- Upload the statement of integrity at : https://forms.gle/KZ39eudFHRp6nRLs8
- Answer all the question correctly.
- Write down your details (Name, Nim and Class) for each page of your answer papers.
- Submit all the answer papers before 14:50 on Friday, December 17th 2021
- If you submit more than the due date, it refers that you do not do the final exam.
- All of cheating will reduce the final score.

The problems:

1. The table shows tensile strengths in 6 machines.

1	2	3	4	5	6
17.5	16.4	20.3	14.6	17.5	18.3
16.9	19.2	15.7	16.7	19.2	16.2
15.8	17.7	17.8	20.8	16.5	17.5
18.6	15.4	18.9	18.9	20.5	20.1

At the 0.05 level of significance, analyse whether or not the mean tensile strengths differ significantly for the six machines?
2. The following data were obtained in a study of the relationship between the weight and chest size of infants at birth.

Weight (kg)	2.75	2.15	4.41	5.52	3.21	4.32	2.31	4.30	3.71
Chest Size (cm)	29.5	26.3	32.2	36.5	27.2	27.7	28.3	30.3	28.7

(a) Display the data in a scatter plot
(b) Calculate the measurement of relationship for both variable and give your interpretation.
(c) Is the measurement in the previous part for the population statistically significant at $\alpha=0.01$?
(d) Find the model
(e) Evaluate the model
3. The table reported on the reasons that women in China migrate within the country to new places of residence.

Reason	Intraprovincial migrants (\%)	Interprovincial migrants
Job transfer	4.8	20
Job assignment	7.2	23
Industry/business	17.8	108
Study/training	16.9	47
Help from friends/		
\quad relatives	6.2	43
Joining family	6.8	45
Marriage	36.8	205
Other	3.5	9

Decide, at the 1% significance level, whether the data provide sufficient evidence to conclude that the distribution of reasons for migration between provinces is different from that for migration within provinces.

Selamat Mengerjakan ©

UNESA
KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA
Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

BLUE PRINT OF ODD SEMESTER MISTERM EXAMINATION

Examination Subjects	: Methods of Statistics
Lectures	: A'yunin Sofro,Ph.D
Program	$:$ Mathematics

No.	Indicator	Test	Key of the answer	Cogniti ve Domain	$\begin{gathered} \text { Scor } \\ \text { e } \end{gathered}$
1.	Able to identity, explain and apply Anova one way test procedures (CLO-2, CLO-4)	1 2 3 4 5 6 17.5 16.4 20.3 14.6 17.5 18.3 16.9 19.2 15.7 16.7 19.2 16.2 15.8 17.7 17.8 20.8 16.5 17.5 18.6 15.4 18.9 18.9 20.5 20.1 The table shows tensile strengths in 6 machines. At the 0.05 level of significance, analyse whether or not the mean tensile strengths differ significantly for the six machines?	- Determine null hypothesis and its alternative - Determine the significant alpha - Find the critical value - Calculate the calculated Anova test from the data - Compare between critical value and calculated Anova test - Determine the decision - Interpretation the results	$\begin{gathered} \text { SK-2 } \\ \text { and } \\ \text { KNO-2 } \end{gathered}$	30
2.	Able to identity, explain and apply correlation and regression procedures (CLO-2, CLO-4)	The following data were obtained in a study of the relationship between the weight and chest size of infants at birth. (a)Display the data in a scatter plot (b)Calculate the measurement of relationship for both variable and give your interpretation. (c) Is the measurement in the previous part for the population statistically significant at $\alpha=0.01$?	- Determine the independent and dependent variable - Draw as X and Y axis - Calculate the coefficient correlation - Determine the null hypothesis and its alternative	$\begin{gathered} \text { SK-2 } \\ \text { and } \\ \text { KNO-2 } \end{gathered}$	40

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS NEGERI SURABAYA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA
Kampus Ketintang, Jalan Ketintang, Surabaya 60231
Telepon : +6231- 8297677, email: matematika@unesa.ac.id, Laman : https://matematika.fmipa.unesa.ac.id/

		(d) Find the model (e) Evaluate the mo			- Determine the significant alpha - Find the critical value - Calculate the calculated t test from the data - Compare between critical value and calculated t test - Determine the decision - Interpretation the results - Estimate the parameters of regression - Calculate the sum square error		
3.	Able to identity, explain and apply chi squared for goodness of fit test procedures (CLO-2, CLO-4)	The table reported on migrate within the co Decide, at the 1% sig provide sufficient evid of reasons for migration from that for migratio Reason Job transfer Job assignment Industry/business Study/training Help from friends/ relatives Joining family Marriage Other	he reasons that try to new (30) ificance level, w nce to conclude between provi within provinces	women in China aces of residence. ether the data hat the distribution ces is different	- Determine null hypothesis and its alternative - Determine the significant alpha - Find the critical value - Calculate the calculated chisquared test (goodness of fit with unequal expectation) from the data - Compare between critical value and calculated chi squared test - Determine the decision		30

			\bulletInterpretation the results		

