MODULE HANDBOOK

Module Name	Thermodynamics of Chemistry			
Module level	Bachelor			
Abbreviation, if applicable	8420403140			
Sub-heading, if applicable	-			
Course included in the	-			
module, if applicable				
Semester/term	4 nd /Second Year			
Module coordinator(s)	Dian Novita, ST., M.Pd.			
Lecturer(s)	1. Prof. Dr. Harun Nasrudin, M.Pd.			
	2. Dian Novita, ST., M.Pd.			
	3. Findiyani Ernawati Asih, S.Pd., M.Pd.			
Language	Indonesian			
Classification within the curriculum	Compulsory Course			
Teaching format/class	3 hours lecturers (50 min per hours)			
hours per week during the				
semester:				
Workload:	1 CU for bachelor degree equals to 3 workhours per week or			
	170 minutes (50' face to face learning, 60' structured learning,			
	and 60' independent learning). In one semester, courses are			
	conducted in 14 weeks (excluding mid and end-term exam).			
	Thus, 1 CU equals to 39.67 workhours per semester. One CU equals to 1.59 ECTS.			
Credit points:	3 CU = 3 x 1.59 = 4.77 ECTS			
Cicait points.	3 CC - 3 K 1.37 - 1.77 ECTS			
	_			
Prerequisites course(s):	- 1 Understand the basic principles of thermodynamics and			
	Understand the basic principles of thermodynamics and their application: the nature and behavior of gases: gas.			
Prerequisites course(s):	their application: the nature and behavior of gases; gas,			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy;			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium,			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas,			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy;			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical equilibrium, electrochemical cell thermodynamics, solution			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium, and the application of			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium, and the application of relevant technologies			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium, and the application of relevant technologies 3. Having the ability to take advantage of ICT-based learning			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium, and the application of relevant technologies 3. Having the ability to take advantage of ICT-based learning resources and learning media in understanding energetic			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium, and the application of relevant technologies 3. Having the ability to take advantage of ICT-based learning resources and learning media in understanding energetic concepts.			
Prerequisites course(s):	their application: the nature and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relation to system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium 2. Able to solve science and technology problems in general and in simple scope such as through the application of knowledge of the properties and behavior of gases; gas, energy, heat and work kinetics; inner energy and enthalpy; process direction and the concept of entropy; free energy and its relationship with system stability, chemical equilibrium, electrochemical cell thermodynamics, solution thermodynamics, phase equilibrium, and the application of relevant technologies 3. Having the ability to take advantage of ICT-based learning resources and learning media in understanding energetic concepts. 4. Make decisions about the relationship between basic			

	5. Demonstrate an attitude of responsibility for work in his				
	field of expertise independently.				
Content:	Ideal gas properties and real gas properties				
Content.	2. Basic understanding and concepts of thermodynamics				
	3. The first law of thermodynamics.				
	4. Enthalpy function, enthalpy change and heat capacity.				
	 5. Basic understanding and concepts of thermodynamics 6. The first law of thermodynamics. 7. Enthalax function, anthalax change and heat conscitute 				
	7. Enthalpy function, enthalpy change and heat capacity.				
	8. Carnot loop process				
	9. Second law of thermodynamics				
	10. The change in entropy in a closed system				
	11. Third law of thermodynamics				
	12. Helmholtz free energy function				
	13. Gibbs free energy function				
	14. Fundamental equations and Maxwell's relationships				
	15. Chemical potential of open systems in mixtures				
	16. Equilibrium in the gas phase				
	17. Equilibrium in chemical reactions				
	18. Shifting equilibrium				
	19. Thermodynamics of electrical calls				
G. 1 / 1:	20. Thermodynamics of electrochemical cells				
Study / exam achievements:	Students are considered to be competent and pass if at least get				
	55 Final score is calculated as follows: 20% norticination + 20%				
	Final score is calculated as follows: 20% participation + 30% assignment + 20% middle evam (UTS) & 30% final evam				
	assignment + 20% middle exam (UTS) & 30% final exam				
	(UAS) Table index of graduation				
	• A = $4 (85 \le -2100)$				
	• $A = 4(83 \le -2100)$ • $A = 3.75(80 \le -485)$				
	• $B+=3.5 (75 \le -4.80)$				
	• B = $3(70 \le -75)$				
	 B- = 2,75 (65 ≤-<75) C+ = 2,5 (60 ≤-<65) 				
	• C+ - 2,3 (60 \(\left \) - \(\cdot \) • C = 2 (55 \(\left \) - \(\cdot \) (60)				
	• C = 2 (33 \(\leq \cdot \) 00) • D = 1 (40 \(\leq \cdot \) 55)				
	• B = 1 (40 \(\leq \cdot \cdot \sqrt{33} \) • E = 0 (0 \(\leq \cdot \cdot \sqrt{40} \)				
Media:					
	Computer, LCD, White board				
Learning Methods	Individuals assignment, group assignment, discussion,				
T :tamatuma.	presentation, and practicum				
Literature:	1. Atkins, Peter, and De Paula, Julio. 2010. Physical				
	Chemistry. 9th edition. Oxford: ELBS Oxford University Press.				
	2. Nasrudin, H., Novita, D., dan Tjahjani, S., 2018.				
	Termodinamika Kimia. Surabaya: Unesa University Press.				
	3. Bahl, A., Bahl, B.S., and Tuli, G.D. 2012. Essential of				
	Physical Chemistry. 4th edition. New Delhi: S.Chand and				
	Company Ltd.				
	4. Levine, N. Ira, 2009, Physical Chemistry, 6th edition,				
	Singapore, McGraw-Hill.				