Module Handbook

Module Name	Physical Chemistry IV
Module Level	Bachelor
Abbreviation, if applicable	KF IV
Sub-heading, if applicable	10.17
Course included in the module, if applicable	
Semester/term	5 th or 6 th third year
Module coordinator(s)	Prof. Dr. Suyono, M.Pd.
Lecturer(s)	Bertha Yonata, M.Pd.
Language	Indonesian
Classification within the curriculum	Compulsory
Teaching format/class hours per week during the	3 hours lectures (50 min/hour)
semester	3 hours lectures (30 hilly hour)
Workload	3 hours lecture, 3hours structured activities, 3
Workload	hours individual activities, 13 week a semester,
	and total 117 hours a semester~ 3.9 ECTS
Credit Point	3 SCU
Requirement	Physical Chemistry III
Learning Outcome	Students have the ability to communicate the
Learning Outcome	results of viscosity, surface tension, adsorption,
	and colloidal analysis so that they are able to
	develop a conceptual framework for formulating
	actions or alternative actions in solving chemical
	problems in life.
	Students are skilled in using tools in analyzing
	viscosity, surface tension, adsorption, and
	colloids.
	Students have knowledge of the surface
	characteristics of capillary symptoms, surface
	thermodynamics, adsorption, surfactants,
	detergents, emulsions, bases and aerosols,
	chemisorption and catalysts.
	Students have the ability to collaborate and are
	responsible for designing, implementing and
	reporting the results of experiments on viscosity,
	surface tension, adsorption, and colloids.
Content	Study of the surface characteristics of capillary
	symptoms, surface thermodynamics, adsorption,
	surfactants, detergents, emulsions, bases and
	aerosols, chemisorption and catalysts
Study/Exam Achievement	Students are considered to be competent and
	pass if at least get 56
	Final score is calculated as follows: 30%
	assignment, 20% middle exam (UTS) & 30% final

	exam (UAS)
	Table index of graduation
	0 - 39.99 E,
	40 - 54.99 D,
	55 - 59.99 C,
	60 - 64.99 C+,
	65 - 69.99 B-,
	70 - 74.99 B,
	75 - 79.99 B+,
	80 - 84.99 A-,
	85 - 100 A.
Media	Computer, LCD, White board, laboratory
	instruments
Learning Methods	Lectures, discussion, assignment, laboratory
	activity
Literature	Duncan J.S. 2004. Introduction to Colloid and
	Surface Chemistry. Butter Worths
	Adamson dan Gost AP, 1977, Physical
	Chemistry of Surfaces 6 th ed. New York:
	Willey Inter Science.
Note	Total ECTS = {(total hours workload x 50 min) /
	60 min } / 25 hours Each ECTS is equals with 25
	hours