MODULE HANDBOOK

Module Name	Surface Chemistry
Module level	Bachelor
Abbreviation, if applicable	8420403168
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	5 th /Third Year
Module coordinator(s)	Prof. Dr. Suyono, M.Pd.
Lecturer(s)	Dr. Harun Nasrudin, M.S.; Bertha Yonata, S.Pd., M.Pd.
Language	Indonesian
Classification within the	Compulsory Course
curriculum	
Teaching format/class	3 hours lecturers (50 min per hours)
hours per week during the	
semester:	
Workload:	Total workload 126 hours per semester which consists of 3
	hours lecture, 3 hours structured activities, 3 hours 3 hours
	3 hours 3 hours individual activities, and 14 weeks per a
	semester (4.2 ECTS)
Credit points:	3 SCU
Prerequisites course(s):	-
Targeted learning outcomes:	CLO 1 students have ability to communicate the analysis
	results of viscosity, surface tension, adsorption, and
	colloids so that they can develop a conceptual framework to
	formulate performance or alternative performance in
	solving chemical problems in life
	CLO 2 Students have mastered to apply laboratory
	equipment for analyzing viscosity, surface tension,
	CLO 2 Students have knowledge on surface properties of
	certillery symptoms, surface thermodynamics, adsorption
	capitally symptoms, surface mermodynamics, adsorption,
	chemisorption and catalysts
	CLOA Students have the ability to work in team and
	responsible for designing implementing and reporting
	experiments results of viscosity surface tension
	adsorption, and colloids.
Content:	Introduction:
	Exploring the surface properties of capillary symptoms.
	surface thermodynamics, adsorption, surfactants.
	detergents, emulsions, bases and aerosols, chemisorption
	and catalysts
	Fluid Viscosity: Its definition and scope, types of
	viscometer, coefficient of viscosity, principle work of
	viscosity, how to measure viscosity, factors affecting
	viscosity

	Surface thermodynamics for surface tension: surface
	properties of fluid, surface tension, surface properties of
	solid matter,
	Properties of surface thermodynamic for adsorption:
	adsorption on the surface of the substance,
	Colloid systems and its usage in daily life: the colloids
	states in terms of particle size, types of colloids and its
	properties, kinetic properties of colloids, optical properties
	of colloids, colloid stability, colloids usage in daily life
Study / exam achievements:	Students are considered to be competent and pass if at least
	get 55
	Final score is calculated as follows: 20% participation +
	30% assignment + 20% middle exam (UTS) & 30% final
	exam (UAS)
	Table index of graduation
	• $A = 4 (85 - 100)$
	• $A = 3,75 (80 - 85)$
	• $B + = 3,5 (75 - 80)$
	• B = $3(70 - 75)$
	• $B- = 2,75 (65 - 75)$
	• $C + = 2,5 (60 - 65)$
	• $C = 2(55 - 60)$
	• $D = 1 (40 - 55)$
	• $E = 0 (0 - 40)$
Media:	Computer, LCD, White board
Learning Methods	Individuals assignment, group assignment, discussion,
	presentation, and practicum
Literature:	1. Duncan J.S. 2004. Introduction to Colloid and Surface
	Chemistry. Butter Worths
	2. Adamson dan Gost AP, 1977, Physical Chemistry of
	Surfaces 6 th ed. New York: Willey Inter Science.
Note	Srface Chemistry covers the activities of theory, practicum
	and presentation.
	Total ECTS = ((total hours workload x 50 min)/60 min)/25
	hours
	Each ECTS is equals wits 25 hours