MODULE HANDBOOK

Module Name	Basic Theory of Inorganic Chemistry
Module level	Bachelor
Abbreviation, if applicable	3074213015
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	4 th /Second Year
Module coordinator(s)	Prof. Dr. Sari Edi Cahyaningrum, M.Si.
Lecturer(s)	1. Prof. Sari Edi Cahyaningrum, M.Si.
	2. Dr. Amaria, M.Si.
	3. Dina Kartika Maharani, S.Si., M.Sc.
Language	Indonesian
Classification within the	Compulsory Course
curriculum	
Teaching format/class	3 hours lecturers (50 min per hours)
hours per week during the	
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or
	170 minutes (50' face to face learning, 60' structured learning,
	and 60' independent learning). In one semester, courses are
	conducted in 14 weeks (excluding mid and end-term exam).
	Thus, 1 CU equals to 39.67 workhours per semester. One CU
Cardit a sister	equals to 1.59 ECTS.
Credit points:	3 CU = 3 x 1.59 = 4.77 ECTS
Prerequisites course(s): Targeted learning outcomes:	- CLO 1 · Having the ability to take advantage of ICT based
Targeted learning outcomes.	CLO 1 : Having the ability to take advantage of ICT-based learning resources and learning to domination of
	Inorganic Chemical theory and concept.
	CLO 2 : Able to knowledge about about periodicity of nature
	of element, acid base theory, basic reaction of
	chemistry, reaction and termodinamic of redox,
	molecule structure: covalent bond, Tonic bond and
	solid state
	CLO 3 : Make decision in hooking; correlating concepts of
	keberkalan the nature of element with theory of
	asam-basa, elementary reaction of chemistry,
	reaction and thermodynamic of redox, covalent
	bond, tonic bond and solid state
	CLO 4 : Demonstrate an attitude of responsibility for work in
	their field of expertise independently.
Content:	Characteristic of elemen: nucleus effective charge; Shielding
	effect, energy ionization; affinity electron; electronegtivity;
	covalen radii; and ionic radii;

	 Chemical bond: ionic bond, characteristic of ionic compound; ionic compound; mechanism of ionic compound; ratio of radii; lattice energy; solution of ionic compound; the Fajan role; Covalen bond: valency Teory Bond; crystal field stabilization (CFSE); Orbital Molecule Theory; hydrogen bond and van der Waals; Reaction of chemistry: basic theory of inorganic chemistry; acid base theory; the strength of acid base; reaction in water and non water. Oxidation-reduction theory: half reaction; oxidation-reduction number; potential reduction; galvani cell; potential electrode; applied potential standart; reaction in water medium. Structure of solid : ionic solid; grafite and diamond; crystale defect; band theory.
Study / exam achievements:	Students are considered to be competent and pass if at least get 55 Final score is calculated as follows: 20% participation + 30% assignment + 20% middle exam (UTS) & 30% final exam (UAS) Table index of graduation • A = 4 ($85 \le -2100$) • A- = 3,75 ($80 \le -< 85$) • B+ = 3,5 ($75 \le -< 80$) • B = 3 ($70 \le -< 75$) • B- = 2,75 ($65 \le -<75$) • C+ = 2,5 ($60 \le -<65$) • C = 2 ($55 \le -<60$) • D = 1 ($40 \le -<55$) • E = 0 ($0 \le -<40$)
Media:	Computer, LCD, White board
Learning Methods	Individuals assignment, group assignment, discussion, presentation
Literature:	 Huheey, J.E.; Keiter, E.A.; Keiter, R.L., 1990, Inorganic Chemistry, Prinsciples of Structure and Reactivity, Fourth Edition, Harper Collins College Publishers. Madan, R.D., 1997. Modern Inorganic Chemistry, S. Chand and Company LTD, New Delhi. Manku, G.S., 1980, Theoritical Principles of Inorganik Chemistry, Tata Mc Graw Hill Book Co of India.Arends, Richard I. (2004). Guide to Field Experiences and Portofolio Development: to accompany ;learning to teach. New York: McGraw-Hill Book Company.

ersity Press		
rum, 2018, 7	Teori Dasar	Kimia
versity Press		
		rum, 2018, <i>Teori Dasar</i> versity Press