MODULE HANDBOOK

Module Name	Spectroscopy and Chromatography Method
Module level	Bachelor
Abbreviation, if applicable	-
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	5 th /Third Year
Module coordinator(s)	Dr. Nita Kusumawati, M.Sc.
Lecturer(s)	1. Dr. Pirim Setiarso, M.Si;
	2. Dr. Maria Monica Sianita, M.Si;
	3. Prof. Dr. Titik Taufikurohmah, M.Si.
Language	Indonesian
Classification within the	Compulsory Course
curriculum	
Teaching format/class	3 hours lecturers (50 min per hour)
hours per week during the	
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or
	170 minutes (50' face to face learning, 60' structured learning,
	and 60' independent learning). In one semester, courses are
	conducted in 14 weeks (excluding mid and end-term exam).
	Thus, 1 CU equals to 39.67 workhours per semester. One CU
	equals to 1.59 ECTS.
Credit points:	3 CU = 3 x 1.59 = 4.77 ECTS
Prerequisites course(s):	-
Targeted learning outcomes:	1. Students have knowledge of chemical analysis qualitatively and quantitatively in terms of chemical
	structure, energetics and analysis based on the working
	principles of several spectrophotometer and
	chromatography instruments.
	2. Students have the ability to collaborate and are responsible
	for conducting qualitative and quantitative chemical
	analysis on several Spectrophotometer and
	Chromatography instruments.
	3. Students have the skills to use the Spectrophotometer and
	Chromatography instruments in conducting chemical
	analysis qualitatively and quantitatively.
	4. Students have the ability to communicate the results of
	chemical analysis qualitatively and quantitatively on
	several Spectrophotometer and Chromatography
	instruments.
Content:	 Orientation of all analytical chemistry IV; UV & UV-Visible Spectrometry:
	3. Atomic Absorption & Fluorescence Spectrometry
	4. Infra-red Spectrometry:
	5. Nuclear Magnetic Resonance (NMR) spectrometry:
	6. Mass Spectrometry (MS);

	7. Gas Chromatography (GC);
	8. High Perfomance Liquid Chromatography (HPLC).
Study / exam achievements:	Students are considered to be competent and pass if at least
	get 55
	Final score is calculated as follows: 20% participation + 30%
	assignment + 20% middle exam (UTS) & 30% final exam
	(UAS)
	Table index of graduation
	• A = 4 ($85 \le -2100$)
	• A- = 3,75 (80 ≤-< 85)
	• $B + = 3,5 \ (75 \le -80)$
	• B = 3 (70 $\leq -<$ 75)
	• B- = 2,75 (65 ≤-<75)
	• C+ = 2,5 (60 ≤-<65)
	• C = 2 (55 $\leq - < 60$)
	• D = 1 (40 $\leq - < 55$)
	• E = 0 (0 $\leq - < 40$)
Media:	Computer, LCD, White board
Learning Methods	Individuals assignment, group assignment, discussion,
	presentation, and practicum
Literature:	1. Harvey, D. 2000. Modern Analytical Chemistry. Int. Ed.
	Singapore: Mc.Graw Hill
	2. Sawyer, Heineman, and Beebe, 1984, Chemistry
	Experiments for Instrumental Methods, New York : John
	Wiley & Sons
	3. Ewing G.W, 1981, Instrumental Methods Of Chemical
	Analysis, International Student Edition, Tokyo: McGraw-
	Hill Kogakusha Ltd
	4. Skoog, D.A, 1980, Principles Of Instrumental Analysis, ed
	II, Tokyo: HoltSounders Japan