MODULE HANDBOOK

Module Name	Physical Chemistry III
Module Level	Bachelor
Abbreviation, if applicable	KFIII
Sub-heading, if applicable	144 144
Course included in the module, if	
applicable	
Semester/term	5 th /third year
Module coordinator(s)	Prof. Dr. Suyono, M.Pd.
Lecturer(s)	Bertha Yonata, M.Pd.
Language	Indonesian
Classification within the curriculum	Compulsory
Teaching format/class hours per	3 hours lectures (50 min/hour)
week during the semester	(0 111111111111111111111111111111111111
Workload	3 hours lecture, 3hours structured activities,
	3 hours individual activities, 13 week a
	semester, and total 117 hours a semester
	3.9 ECTS
Credit Point	3 SCU
Requirement	Physical Chemistry I
Learning Outcome	Students have the ability to communicate
<u> </u>	the results of experiments so they are able to
	develop a conceptual framework for
	formulating actions or alternative actions in
	solving chemical problems in life.
	Students skillfully use tools in determining
	reaction rates and reaction mechanisms
	based on empirical facts (inductive
	dimensions) and submit theoretical
	arguments to explore empirical facts that
	occur (deductive dimensions) in the field of
	reaction kinetics.
	Students have knowledge of the laws of
	reaction rates and reaction mechanisms
	based on empirical facts (inductive
	dimensions) and submit theoretical
	arguments to explore empirical facts that
	occur (deductive dimensions) in the field of
	reaction kinetics.
	Students have the ability to cooperate and
	are responsible for assessing the rate of
	reaction as a function of concentration,
	temperature, and catalyst as well as the legal
	interpretation of the reaction rate to the
	discussion and design of reaction
	mechanisms (including photochemical).
Content	Empirical and theoretical studies of reaction
	rates as a function of concentration,
	temperature and catalysts and the

	interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).
Study/Exam Achievement	Students are considered to be competent and pass if at least get 56
	Final score is calculated as follows: 30% assignment, 20% middle exam (UTS) & 30% final exam (UAS)
	Table index of graduation 0 - 39.99 E,
	40 - 54.99 D, 55 - 59.99 C,
	60 - 64.99 C+,
	65 - 69.99 B-, 70 - 74.99 B,
	75 - 79.99 B+,
	80 - 84.99 A-,
Media	85 - 100 A. Computer, LCD, White board, laboratory
Wedia	instruments
Learning Methods	Lectures, discussion, assignment, laboratory activity
Literature	Wilkinson, Frank. 1936. Chemical Kinetics and Reaction Mechanisms. Victoria: Van
	Nostrand Reinhold Company.
	Atkins, P. W. 1995. Physical Chemistry.
	Third Edition. New York: W. H. Freeman and Company.
	Castelan, Gilbert W. 1983. <i>Physical</i>
	Chemistry. Third Edition. Tokyo: Addison-
	Wesley Publishing Company.
Note	Total ECTS = {(total hours workload x 50
	min) / 60 min } / 25 hours Each ECTS is
	equals with 25 hours