MODULE HANDBOOK

Module Name	Electrochemistry Analysis				
Module level	Bachelor				
Abbreviation, if applicable	8420402105				
Sub-heading, if applicable	-				
Course included in the	-				
module, if applicable					
Semester/term	8 th / fourth year				
Module coordinator(s)	Dr. Pirim Setiarso, M.Si				
Lecturer(s)	Prof. Dr. Titik Taufikurohmah, M.Si., Prof. Dr. Nita				
	Kusumawati, M.Sc., Dr. Pirim Setiarso, M.Si., Dr Maria Monica SBW, M.Si				
Language	Bahasa Indonesia				
Classification within the	optional				
curriculum					
Teaching format/class	2 hours lectures (50 min / hour)				
hours per week during the					
semester:					
Workload:	1 CU for bachelor degree equals to 3 workhours per week or				
	170 minutes (50' face to face learning, 60' structured learning,				
	and 60' independent learning). In one semester, courses are				
	conducted in 14 weeks (excluding mid and end-term exam).				
	Thus, 1 CU equals to 39.67 workhours per semester. One CU				
	equals to 1.59 ECTS.				
Credit points:	2 CU = 2 x 1.59 = 3,18 ECTS				
Prerequisite course(s):	Quantitative Analytical Chemistry,				
Targeted learning outcomes:	CLO 1 Students have knowledge of qualitative and				
	quantitative chemical analysis in terms of energetics,				
	dynamics and analysis based on electrical properties				
	including: potentiometric analysis, conductometry,				
	electrogravimetry, polarography and voltammetry				
	CLO 2 Skilled students use tools in conducting qualitative				
	and quantitative chemical analysis based on electrical				
	properties including: potentiometric analysis,				
	conductometry, electrogravimetry, polarography and				
	voltammetry				
	CLO 3 Students have the ability to collaborate and are				
	responsible for conducting qualitative and				
	quantitative chemical analysis based on electrical				
	properties including: potentiometric analysis,				
	conductometry, electrogravimetry, polarography and				
	voltammetry				
	voitaiiiiicti y				

	CLO 4 Students have the ability to communicate the results of chemical analysis qualitatively and quantitatively based on electrical properties including: potentiometric analysis, conductometry, electrogravimetry, polarography and voltammetry				
Content:	potentiometry, conductometry, electrogravimetry, polarography and voltammetry				
Study / exam achievements:	Students are considered to be competent and pass if at least get 55 Final score is calculated as follows: 20% participation + 30% assignment + 20% middle exam (UTS) & 30% final exam (UAS) Table index of graduation • $A = 4 (85 \le -2 100)$ • $A = 3.75 (80 \le -< 85)$ • $B + = 3.5 (75 \le -< 80)$ • $B = 3 (70 \le -< 75)$ • $B = 2.75 (65 \le -< 75)$ • $C + = 2.5 (60 \le -< 65)$ • $C = 2 (55 \le -< 60)$ • $D = 1 (40 \le -< 55)$ • $E = 0 (0 \le -< 40)$				
Media:	Computer, LCD, White board, laboratory				
Learning Methods	Individuals assignment, group assignment, discussion, presentation, and practicum				
Literature:	Bagotsky, V.S, 2006, Fundamentals of Electrochemistry, New Jersey: John Wiley & Sons Ewing G.W, 1981, Instrumental Methods Of Chemical Analysis, International Student Edition, Tokyo: McGraw-Hill Kogakusha Ltd Harvey, D. 2000. Modern Analytical Chemistry. Int. Ed. Singapore: Mc.Graw Hill Sawyer, Heineman, and Beebe, 1984, Chemistry Experiments for Instrumental Methods, New York: John Wiley & Sons Skoog, D.A, 1980, Principles Of Instrumental Analysis, ed II, Tokyo: Holt-Sounders Japan				