MODULE HANDBOOK

Madula Nama	Desie Chemistry II
Module Name	Basic Chemistry II
Module level	Bachelor
Abbreviation, if applicable	8420403122
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	ad
Semester/term	2 nd /First Year
Module coordinator(s)	Dr. Utiya Azizah, M.Pd.
Lecturer(s)	Dr. Utiya Azizah, M.Pd.;Dr. Sukarmin, M.Pd.; Dr. Nuniek
	Herdyastuti, M.Si.; Dian Novita, S.T., M.Pd.; Dr. Maria
	Monica Sianita B., M.Si.; Dr. Hj. Rinaringsih, M.Pd; Dr.
	Mitarlis, S.Pd., M.Si
Language	Indonesian
Classification within the	Compulsory Course
curriculum	
Teaching format/class	3 hours lecturers (50 min per hours)
hours per week during the	
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or
	170 minutes (50' face to face learning, 60' structured learning,
	and 60' independent learning). In one semester, courses are
	conducted in 14 weeks (excluding mid and end-term exam).
	Thus, 1 CU equals to 39.67 workhours per semester. One CU
Credit points:	equals to 1.59 ECTS. 3 CU = 3 x 1.59 = 4.77 ECTS
Prerequisite course(s):	
Targeted learning outcomes:	1. Students have the ability to utilize learning resources and
Targeted learning outcomes.	ICT to support mastery of concepts and theories of all
	topics in Basic Chemistry 2.
	2. Students have the ability to make decision about the
	relationship between concepts on Basic Chemistry 2 and
	laboratory practice with Chemistry in daily life.
	3. Students have knowledge of the reaction rate, chemical
	equilibrium, redox and electrochemistry, colloidal
	system, nuclear chemistry and radioactivity, chemical
	elements, green chemistry and chemicals in daily life,
	4. Students have responsible attitude in doing laboratory
	practice honestly.
Content:	1. Rate of reaction: Kinetics Law, Factors that affect the
	rate of reaction, activation energy, order of reaction,
	collision theory, and mechanism of reaction.
	2. Chemical equilibrium: Dynamic equilibrium,
	Equilibrium Law, Le Chatelier Principles, application of
	equilibrium concepts in industry.
	3. Redox and electrochemistry: concepts of redox,
	equivalency of redox reaction, electrochemistry, DGL

	acreat compaign
	 aspect, corrosion. 4. Colloid system: definition, dispersion system, classification of colloid based on their properties, colloid making and their usage in daily life. 5. Nuclear chemistry: stability of nuclear, radioactive decay, nuclear reaction. 6. Chemical elements: metals, non-metals, and transition elements, principles of metals processing. 7. Green Chemistry: definition and characteristics, principles that support green chemistry. 8. Chemistry in daily life: chemicals in household, chemicals in food, addictive agent and psychotropic drugs.
Study / exam achievements:	Students are considered to be competent and pass if at least get 55 Final score is calculated as follows: 20% participation + 30% assignment + 20% middle exam (UTS) & 30% final exam (UAS) Table index of graduation • A = 4 ($85 \le -2 100$) • A- = 3,75 ($80 \le -< 85$) • B+= 3,5 ($75 \le -< 80$) • B = 3 ($70 \le -< 75$)
Media:	• B- = 2,75 ($65 \le -<75$) • C+ = 2,5 ($60 \le -<65$) • C = 2 ($55 \le -<60$) • D = 1 ($40 \le -<55$) • E = 0 ($0 \le -<40$) Computer, LCD, White board
Learning Methods	Individuals assignment, group assignment, discussion,
Literature:	 presentation, and practicum Tim Kimia Dasar. 2017. <i>Kimia Dasar I</i>. Surabaya: Unesa University Press. Brady and Humiston. 2004. <i>General Chemistry, Principles and Structures</i>. New York: John Willey and Sons. Chang, Raymond. 2005. <i>General Chemistry The Essential Concepts Third Edition</i>. USA: McGraw Hill. Achmad, Hiskia dan Tupamahu. 1990. <i>Penuntun Belajar Struktur Atom, Struktur Molekul, Sistem Periodik</i>. Bandung: ITB. Achmad, Hiskia dan Tupamahu. 1991. <i>Stoikiometri dan Energetika Kimia</i>, Bandung, PT Citra Aditya Bakti. Ahmad, Hiskia. 1990. <i>Kimia Larutan</i>. Bandung: Jurusan Kimia FMIPA ITB