MODULE HANDBOOK

Module Name	Basic Chemistry II
Module level	Bachelor
Abbreviation, if applicable	8420403122
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	2 nd /First Year
Module coordinator(s)	Dr. Utiya Azizah, M.Pd.
Lecturer(s)	Dr. Utiya Azizah, M.Pd.;Dr. Sukarmin, M.Pd.; Dr. Nuniek
	Herdyastuti, M.Si.; Dian Novita, S.T., M.Pd.; Dr. Maria
	Monica Sianita B., M.Si.; Dr. Hj. Rinaringsih, M.Pd; Dr.
	Mitarlis, S.Pd., M.Si
Language	Indonesian
Classification within the	Compulsory Course
curriculum	
Teaching format/class	3 hours lecturers (50 min per hours)
hours per week during the	
semester.	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or
Workfoud.	170 minutes (50' face to face learning 60' structured learning.
	and 60' independent learning). In one semester courses are
	conducted in 14 weeks (excluding mid and end-term exam).
	Thus, 1 CU equals to 39.67 workhours per semester. One CU
	equals to 1.59 ECTS.
Credit points:	3 CU = 3 x 1.59 = 4.77 ECTS
Prerequisites course(s):	-
Targeted learning outcomes:	1. Students have the ability to utilize learning resources and
	ICT to support mastery of concepts and theories of all
	topics in Basic Chemistry II.
	2. Students have the ability to make decision about the
	relationship between concepts on Basic Chemistry II and
	laboratory practice with Chemistry in daily life.
	3. Students have knowledge of the reaction rate, chemical
	equilibrium, redox and electrochemistry, colloidal
	system, nuclear chemistry and radioactivity, chemical
	elements green chemistry and chemicals in daily life
	4 Students have responsible attitude in doing laboratory
	practice honestly
Content:	1. Bate of reaction: Kinetics Law Factors that affect the
	rate of reaction, activation energy order of reaction
	collision theory, and mechanism of reaction
	2. Chemical equilibrium: Dynamic equilibrium
	Equilibrium Law Le Chatelier Principles application of
	equilibrium concepts in industry
	3. Redox and electrochemistry: concepts of redox
	equivalency of redox reaction. electrochemistry. DGL

	cell and Nernst equation, electrolysis and its quantitative
	aspect. corrosion.
	4. Colloid system: definition, dispersion system.
	classification of colloid based on their properties, colloid
	making and their usage in daily life.
	5. Nuclear chemistry: stability of nuclear, radioactive
	decay nuclear reaction
	6 Chemical elements: metals non-metals and transition
	elements principles of metals processing
	7 Creen Chemistry definition and characteristics
	principles that support green chemistry.
	8 Chemistry in daily life: chemicals in household
	chemicals in food addictive agent and psychotropic
	druos
Study / exam achievements:	Students are considered to be competent and pass if at least
Study / Skull usine ; should.	get 55
	Final score is calculated as follows: 20% participation + 30%
	assignment + 20% middle exam (UTS) & 30% final exam
	(UAS)
	Table index of graduation
	• $A = 4 (85 < -> 100)$
	• $A = 3.75 (80 < -< 85)$
	• $B + = 3.5 (75 < - < 80)$
	• $B = 3(70 \le 75)$
	• B- = $275(65 < -(75))$
	• $C + = 2.5 (60 < -<65)$
	• $C = 2(55 \le -(60))$
	• $D = 1 (40 < - <55)$
	• $E = 0 (0 < -<40)$
Media:	Computer. LCD. White board
Learning Methods	Individuals assignment, group assignment, discussion,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	presentation. and practicum
Literature:	1. Tim Kimia Dasar. 2017. Kimia Dasar I. Surabaya: Unesa
	University Press.
	2 Brady and Humiston. 2004. General Chemistry. Principles
	and Structures. New York: John Willey and Sons.
	3. Chang. Raymond. 2005. General Chemistry The Essential
	Concepts Third Edition. USA: McGraw Hill.
	4. Achmad. Hiskia dan Tunamahu. 1990. Penuntun Belajar
	Struktur Atom, Struktur Molekul, Sistem Periodik, Bandung:
	ITB.
	5. Achmad. Hiskia dan Tupamahu. 1991. Stoikiometri dan
	<i>Energetika Kimia</i> , Bandung, PT Citra Aditya Bakti.
	6 Ahmad Hiskia 1990 <i>Kimia Larutan</i> Bandung: Jurusan
	Kimia FMIPA ITB
Note:	Basic Chemistry II cover the activities on theory, practice
1000.	and presentation
	and presentation.