MODULE HANDBOOK

Module Name	Electrochemistry Analysis
Module level	Bachelor
Abbreviation, if applicable	8420402105
Sub-heading, if applicable	-
Course included in the	_
module, if applicable	
Semester/term	5rd / fiveth year
Module coordinator(s)	Dr. Pirim Setiarso, M.Si
Lecturer(s)	Prof. Dr. Titik Taufikurohmah, M.Si., Prof. Dr. Nita
	Kusumawati, M.Sc., Dr. Pirim Setiarso, M.Si., Dr Maria
Laganage	Monica SBW, M.Si
Language	Bahasa Indonesia
Classification within the curriculum	optional
Teaching format/class	2 hours lectures (50 min / hour)
hours per week during the	
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or
	170 minutes (50' face to face learning, 60' structured learning,
	and 60' independent learning). In one semester, courses are
	conducted in 14 weeks (excluding mid and end-term exam).
	Thus, 1 CU equals to 39.67 workhours per semester. One CU
	equals to 1.59 ECTS.
Credit points:	2 CU = 2 x 1.59 = 3,18 ECTS
Prerequisites course(s):	Quantitative Analytical Chemistry,
Targeted learning outcomes:	CLO 1. Students have knowledge of qualitative and
	quantitative chemical analysis in terms of energetics, dynamics
	and analysis based on electrical properties including:
	potentiometric analysis, conductometry, electrogravimetry,
	polarography and voltammetry
	CLO 2. Skilled students use tools in conducting qualitative and
	quantitative chemical analysis based on electrical properties
	including: potentiometric analysis, conductometry,
	electrogravimetry, polarography and voltammetry
	CLO 3. Students have the ability to collaborate and are
	responsible for conducting qualitative and quantitative
	chemical analysis based on electrical properties including:
	potentiometric analysis, conductometry, electrogravimetry,
	polarography and voltammetry
	CLO 4. Students have the ability to communicate the results of
	chemical analysis qualitatively and quantitatively based on
	enemieur anarysis quantarivery and quantitarivery based off

	electrical properties including: potentiometric analysis,
	conductometry, electrogravimetry, polarography and
	voltammetry
Content:	potentiometry, conductometry, electrogravimetry,
	polarography and voltammetry
Study / exam achievements:	Students are considered to be competent and pass if at least get 55 Final score is calculated as follows: 20% participation + 30% assignment + 20% middle exam (UTS) & 30% final exam (UAS) Table index of graduation • A = 4 ($85 \le 200$) • A- = 3,75 ($80 \le -85$) • B+ = 3,5 ($75 \le -80$) • B = 3 ($70 \le -85$) • B- = 2,75 ($65 \le -75$) • C+ = 2,5 ($60 \le -85$) • C = 2 ($55 \le -80$) • D = 1 ($40 \le -85$) • E = 0 ($0 \le -80$)
Media:	Computer, LCD, White board, laboratory
Learning Methods	Individuals assignment, group assignment, discussion, presentation, and practicum
Literature:	Bagotsky, V.S, 2006, <i>Fundamentals of Electrochemistry</i> , New Jersey: John Wiley & Sons
	 Ewing G.W, 1981, Instrumental Methods Of Chemical Analysis, International Student Edition, Tokyo: McGraw- Hill Kogakusha Ltd Harvey,D. 2000. Modern Analytical Chemistry. Int. Ed. Singapore: Mc.Graw Hill Sawyer, Heineman, and Beebe,1984, Chemistry Experiments for Instrumental Methods, New York : John Wiley & Sons Skoog, D.A,1980, Principles Of Instrumental Analysis, ed II, Tokyo: Holt- Sounders Japan
Note	Electrochemistry Analysis covers the activities of theory, practicum, make a practicum report and presentation.