MODULE HANDBOOK

Module Name	Mathematics For Chemistry	
Module level	Bachelor	
Abbreviation, if applicable	8420403185	
Sub-heading, if applicable	-	
Course included in the		
module, if applicable		
Semester/term	2 nd /First Year	
Module coordinator(s)	Dr. Nuniek Herdyastuti, M.Si	
Lecturer(s)	Dr. Pirim Setiarso, M.Si	
Language	Indonesian	
Classification within the	Compulsory Course	
curriculum	Compusory Course	
Teaching format/class	3 hours lecturers (50 min per hours)	
hours per week during the	5 hours rectarers (50 him per hours)	
semester:		
Workload:	3 x 50 minutes lectures, 3 x 60 minutes structured activity,	
	3 x 60 minutes individual activity, 14 weeks per semester,	
	119 total hours per semester ~ 4.77 ECTS**	
Credit points:	3 CU = 3 x 1.59 = 4.77 ECTS	
Prerequisite course(s):	Basic Mathematics	
Targeted learning outcomes:	CLO 1 Students have Capable to demonstrate knowledge	
	related to theoretical concepts about structure, dynamics, and	
	energy, as well as the basic principles of separation, analysis,	
	synthesis and characterization of chemicals	
Content:	Introduction : Briefly discuss the subject of mathematics for	
Content.	chemistry.	
	Functions and Limits	
	Concept of differential	
	Calculus of differential	
	Integral concept	
	Integration methods	
	Improper integrals	
	Line integral and integral fold	
	Operator	
	Matrices: The definition of a matrix, matrix operations	
	include addition of matrices, subtraction of matrices,	
	multiplication of matrices and transpose matrix and properties	
	as well as inverse matrix by Gauss substitution.	
	Applied of matrices to solve problems in chemistry such as	
	reaction stoichiometry, redoxs reactions and quantitative	
	analysis as well.	
	Determinants include the definition of the matrix	
	determinant and its properties as well as the minors and	
	determinant und his properties as wen as the minors and	
	cofactors related to adjoint matrices and inverse matrices.	

phi electron energy in chemical compounds with double bonds Differential equation: Definition of a differential equation, Differential equation with separate variables Homogeneous differential equations Exact Differential Equations Inexact differential equations Level 1 Linear Differential Equations Bernauli Differential Equations Level n Linear Differential Equations Vector and tensor Sequence and series Special functions Fourier and Laplace transforms		
Students are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:		
ssment Components	Percentage of contribution	
cipation	20%	
gnment	30%	
semester test	20%	
l semester test	30%	
Computer, LCD, White board		
Lectures and discussions, and working on problems		
1. Robert G Mortimer, 2005, Mathematics for Physical		
Chemistry, 3th ed, Elsevier Inc, USA.		
2. Irwin Krizig, 1989, Advanced Mathematic for Physicist		
and Engineering, 4thed, John Wiley & Sons Inc, New York.		
*1 CU in learning process = three periods consist of: (a) scheduled instruction in a classroom or laboratory (50 minutes); (b) structured activity (60 minutes); and (c) individual activity (60 minutes) according to the Regulation of Indonesia Ministry of Research, Technology, and Higher Education No. 44 Year 2015 jo. the Regulation of Indonesia Ministry of Research, Technology, and Higher Education No. 50 Year 2018. **1 CU = 1.59 ECTS according to Rector Decree Of		
tion No. 44 Ye try of Research, ar 2018.	ear 2015 Techno CTS ace	