MODULE HANDBOOK

Module Name	Quantum Chemistry
Module level	Bachelor
Abbreviation, if applicable	
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	3 rd /Third Semester
Module coordinator(s)	Dr. IGM Sanjaya, M.Si.
Lecturer(s)	Dr. IGM Sanjaya, M.Si, and Samik, S.Si., M.Si.
Language	Bahasa Indonesia
Classification within the	Optional
curriculum	
Teaching format/class	3 hours lectures (50 min / hour)
hours per week during the	
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week
	or 170 minutes (50' face to face learning, 60' structured
	learning, and 60' independent learning). In one semester,
	courses are conducted in 14 weeks (excluding mid and
	end-term exam). Thus, 1 CU equals to 39.67 workhours
	per semester. One CU equals to 1.59 ECTS.
Credit points:	3 CU = 3 x 1.59 = 4.77 ECTS
Prerequisites course(s):	Basic Chemistry I
Targeted learning outcomes:	1. Students can take advantage of digital transformation
	and various other learning resources to support their
	understanding of quantum chemistry.
	2. Students can master the concepts and basic principles
	of quantum chemistry which are appropriate for the
	structure, bonds, and characteristics of various
	materials in physical chemistry.
	3. Students are able to make decisions in formulating
	8
	solutions to quantum chemical problems related to
	atomic structure, chemical bonds, molecular structure,
	molecular symmetry, spectroscopy and molecular
	interactions.
	4. Students have good morals, ethics and personality in
	completing quantum chemistry assignments
	independently or in groups and are responsible for
	communicating the results.
Contents	
Content:	1. Basic Concepts and Principles of Quantum Chemistry.

Study / exam achievements:	 2. The application of quantum chemistry to translational, vibration and rotation motion 3. The application of quantum chemistry to the structure of the hydrogen atom and the atom with many electrons 4. Chemical bond theory (Valence bond theory and molecular orbital theory) 5. Molecular symmetry 6. Molecular spectroscopy 7. molecular interactions Students are considered to be competent and pass if at least get 55 Final score is calculated as follows: 20% participation + 30% assignment + 20% middle exam (UTS) & 30% final exam (UAS) Table index of graduation A = 4 (85 ≤-≥ 100) A- = 3,75 (80 ≤-< 85) B+ = 3,5 (75 ≤-< 80) B = 3 (70 ≤-< 75) C+ = 2,5 (60 ≤-< 65) C = 2 (55 ≤-< 60) D = 1 (40 ≤-< 55) E = 0 (0 ≤-< 40)
Media:	Computer, LCD, White board, internet
Learning Methods	Individuals assignment, group assignment, discussion,
	and presentation
Literature:	1. Atkins, P., Paula, J.d., and Keeler, J. 2018. Atkin's
	Physical Chemistry, 11th edition. New York:
	Oxford University Press.
	2. Levine, Ira N. 2014. Quantum chemistry, 7th edition. New York: Pearson Education, Inc