MODULE HANDBOOK

Module Name	Mathematics For Chemistry
Module level	Bachelor
Abbreviation, if applicable	3034213020
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	3 rd /Second Year
Module coordinator(s)	Dr. Nuniek Herdyastuti, M.Si
Lecturer(s)	Dr. Pirim Setiarso, M.Si
Language	Indonesian
Classification within the	Compulsory Course
curriculum	
Teaching format/class	3 hours lecturers (50 min per hours)
hours per week during the	
semester:	
Workload:	Total workload 126 hours per semester which consists of 3
	hours lecture, 3 hours structured activities, 3 hours 3 hours
	3 hours 3 hours individual activities, and 14 weeks per a
	semester (4.2 ECTS)
Credit points:	3 SCU
Prerequisites course(s):	Matematika Dasar
Targeted learning outcomes:	CLO 1 Students have Capable to demonstrate knowledge
	related to theoretical concepts about structure, dynamics,
	and energy, as well as the basic principles of separation,
	analysis, synthesis and characterization of chemicals
Content:	Introduction : Briefly discuss the subject of mathematics
	for chemistry.
	Functions and Limits
	Concept of differential
	Calculus of differential
	Integral concept
	Integration methods
	Improper integrals
	Line integral and integral fold
	Operator
	Matrices: The definition of a matrix, matrix operations
	include addition of matrices, subtraction of matrices,
	multiplication of matrices and transpose matrix and
	properties
	as well as inverse matrix by Gauss substitution.
	Applied of matrices to solve problems in chemistry such as
	reaction stoichiometry, redoxs reactions and quantitative
	analysis as well.
	Determinants include the definition of the matrix
	determinant and its properties as well as the minors and
	cotactors related to adjoint matrices and inverse matrices.

	Applied of the determinant matrices for quantitative analysis and determining the eigenvalues of the Schodinger equation phi electron energy in chemical compounds with double bonds Differential equation : Definition of a differential equation, Differential equation with separate variables Homogeneous differential equations Exact Differential Equations Inexact differential equations Level 1 Linear Differential Equations Bernauli Differential Equations Level n Linear Differential Equations Vektor and tensor Sequence and series Special functions Fourier and Laplace transforms
Study / exam achievements:	Students are considered to be competent and pass if at least get 55 Final score is calculated as follows: 20% participation + 30% assignment + 20% middle exam (UTS) & 30% final exam (UAS) Table index of graduation • A = 4 (85 - 100) • A- = 3,75 (80 - 85) • B+ = 3,5 (75 - 80) • B = 3 (70 - 75) • B- = 2,75 (65 - 75) • C+ = 2,5 (60 - 65) • C = 2 (55 - 60) • D = 1 (40 - 55) • E = 0 (0 - 40)
Media:	Computer, LCD, White board
Learning Methods	Lectures and discussions, and working on problems
Literature:	 Robert G Mortimer, 2005, Mathematics for Physical Chemistry, 3th ed, Elsevier Inc, USA. Irwin Krizig, 1989, Advanced Mathematic for Physicist and Engineering, 4thed, John Wiley & Sons Inc, New York.
Note	covers the activities of theory, presentation and problem solving. Total ECTS = ((total hours workload x 50 min)/60 min)/25 hours Each ECTS is equals wits 25 hours