Module Handbook

Module Hallubook	
Module Name	Basic Chemistry II
Module level	Bachelor
Abbreviation, if applicable	8420403122
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	2 nd /First Year
Module coordinator(s)	Dr. Utiya Azizah, M.Pd.
Lecturer(s)	Dr. Utiya Azizah, M.Pd.; Dr. Sukarmin, M.Pd.; Dr. Nuniek
	Herdyastuti, M.Si.; Dian Novita, S.T., M.Pd.; Dr. Maria Monica
	Sianita B., M.Si.; Dr. Hj. Rinaringsih, M.Pd; Dr. Mitarlis, S.Pd.,
	M.Si
Language	Indonesian
Classification within the	Compulsory Course
curriculum	
Teaching format/class	3 hours lecturers (50 min per hours)
hours per week during the	
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or 170
	minutes (50' face to face learning, 60' structured learning, and 60'
	independent learning). In one semester, courses are conducted in 14
	weeks (excluding mid and
	end-term exam). Thus, 1 CU equals to 39.67 workhours per
	semester. One CU equals to 1.587 ECTS.
Credit points:	3 CU (4,761 ECTS)
Prerequisites course(s):	-
Targeted learning outcomes:	1. Students have the ability to utilize learning resources and ICT
	to support mastery of concepts and theories of all topics in
	Basic Chemistry II.
	2. Students have the ability to make decision about the
	relationship between concepts on Basic Chemistry II and
	laboratory practice with Chemistry in daily life.
	3. Students have knowledge of the reaction rate, chemical
	equilibrium, redox and electrochemistry, colloidal system,
	nuclear chemistry and radioactivity, chemical elements, green
	chemistry and chemicals in daily life, 5. Students have responsible attitude in daing laboratory prosting
	4. Students have responsible attitude in doing laboratory practice
Contonti	honestly.
Content:	1. Rate of reaction: Kinetics Law, Factors that affect the rate of reaction activation energy order of reaction collision theory.
	reaction, activation energy, order of reaction, collision theory,
	and mechanism of reaction.
	2. Chemical equilibrium: Dynamic equilibrium, Equilibrium
	Law, Le Chatelier Principles, application of equilibrium
	concepts in industry. Bodoy and electrochemistry: concepts of redoy, equivalency
	3. Redox and electrochemistry: concepts of redox, equivalency

	 of redox reaction, electrochemistry, DGL cell and Nernst equation, electrolysis and its quantitative aspect, corrosion. 4. Colloid system: definition, dispersion system, classification of colloid based on their properties, colloid making and their usage in daily life. 5. Nuclear chemistry: stability of nuclear, radioactive decay, nuclear reaction. 6. Chemical elements: metals, non-metals, and transition elements, principles of metals processing. 7. Green Chemistry: definition and characteristics, principles that support green chemistry. 8. Chemicals in household, chemicals in
	food, addictive agent and psychotropic drugs.
Study / exam achievements:	Students are considered to be competent and pass if at least get 55 Final score is calculated as follows: 20% participation + 30% assignment + 20% middle exam (UTS) & 30% final exam (UAS) Table index of graduation • A = 4 ($85 \le -\ge 100$) • A- = 3,75 ($80 \le -< 85$) • B+ = 3,5 ($75 \le -< 80$) • B = 3 ($70 \le -< 75$) • B- = 2,75 ($65 \le -<75$) • C+ = 2,5 ($60 \le -<65$) • C = 2 ($55 \le -<60$) • D = 1 ($40 \le -<55$) • E = 0 ($0 \le -<40$)
Media:	Computer, LCD, White board
Learning Methods	Individuals assignment, group assignment, discussion, presentation,
Literature:	 and practicum Tim Kimia Dasar. 2017. <i>Kimia Dasar I</i>. Surabaya: Unesa University Press. Brady and Humiston. 2004. <i>General Chemistry, Principles and Structures</i>. New York: John Willey and Sons. Chang, Raymond. 2005. <i>General Chemistry The Essential Concepts Third Edition</i>. USA: McGraw Hill. Achmad, Hiskia dan Tupamahu. 1990. <i>Penuntun Belajar Struktur Atom, Struktur Molekul, Sistem Periodik</i>. Bandung: ITB. Achmad, Hiskia dan Tupamahu. 1991. <i>Stoikiometri dan Energetika Kimia</i>, Bandung, PT Citra Aditya Bakti. Ahmad, Hiskia. 1990. <i>Kimia Larutan</i>. Bandung: Jurusan Kimia FMIPA ITB
Note:	Basic Chemistry II cover the activities on theory, practice, and presentation.