MODULE HANDBOOK

Module Level Bachelor Abbreviation, if applicable - Course included in the module, if applicable - Semester/term 5 th /Third year Semester/term 5 th /Third year Calassification within the classification within the curriculum Thomesian Teaching format/class hours per week during the semester 3 hours lectures (50 min/hour) Workload 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and re	Module Name	Chemical Kinetics		
Sub-heading, if applicable - Course included in the - module, if applicable - Semester/term 5 th /Third year Module coordinator(s) Prof. Dr. Suyono, M.Pd. Lecturer(s) Bertha Yonata, M.Pd. Language Indonesian Classification within the Compulsory curriculum 3 hours lectures (50 min/hour) Teaching format/class hours 3 k 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students have the ability use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate as a function of concentration, temperature, and catalyst as well as the legal interpre				
Sub-heading, if applicable - Course included in the - module, if applicable - Semester/term 5 th /Third year Module coordinator(s) Prof. Dr. Suyono, M.Pd. Lecturer(s) Bertha Yonata, M.Pd. Language Indonesian Classification within the Compulsory curriculum 3 hours lectures (50 min/hour) Teaching format/class hours 3 k 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students have the ability use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate as a function of concentration, temperature, and catalyst as well as the legal interpre	Abbreviation, if applicable			
Course included in the module, if applicable - Semester/term 5 th /Third year Module coordinator(s) Prof. Dr. Suyono, M.Pd. Language Indonesian Classification within the curriculum Compulsory Teaching format/class hours per week during the semester 3 hours lectures (50 min/hour) Workload 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS*** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate laws to the discussion and design of reaction dechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interp		-		
Semester/term 5 th /Third year Module coordinator(s) Prof. Dr. Suyono, M.Pd. Lecturer(s) Bertha Yonata, M.Pd. Language Indonesian Classification within the curriculum Compulsory ger week during the semester 3 hours lectures (50 min/hour) per week during the semester 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature, and catalysts and		-		
Module coordinator(s) Prof. Dr. Suyono, M.Pd. Lecturer(s) Bertha Yonata, M.Pd. Language Indonesian Classification within the curriculum Compulsory Teaching format/class hours per week during the semester 3 hours lectures (50 min/hour) Workload 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical). Study/Exam	module, if applicable			
Lecturer(s) Bertha Yonata, M.Pd. Language Indonesian Classification within the curriculum Compulsory Teaching format/class hours per week during the semester 3 hours lectures (50 min/hour) Workload 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content <t< td=""><td>Semester/term</td><td>5th/Third year</td><td></td></t<>	Semester/term	5 th /Third year		
Language Indonesian Classification within the curriculum Compulsory Teaching format/class hours per week during the semester 3 hours lectures (50 min/hour) Workload 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are considered to complete the course and pass if th	Module coordinator(s)	Prof. Dr. Suyono, M.Pd.		
Classification within the curriculum Compulsory Teaching format/class hours per week during the semester 3 hours lectures (50 min/hour) Workload 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are considered to complet the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based	Lecturer(s)	Bertha Yonata, M.Pd.		
curriculum 3 hours lectures (50 min/hour) ger week during the semester 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction in tenasisms (including photochemical). Study/Exam Achievement Students are considered to complet the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components	Language	Indonesian		
Teaching format/class hours per week during the semester 3 hours lectures (50 min/hour) Workload 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components		Compulsory		
per week during the semester 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical submit (heoretical structure) and catalysts and the interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are considered to complete the course and grade (NA) is calculated based on the following ratio:				
Workload 3 x 50 minutes lectures, 3 x 60 minutes structured activity, 3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate last us to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:	0	3 hours lectures (50 min/hour)		
3 x 60 minutes individual activity, 14 weeks per semester, 119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:	* *			
119 total hours per semester ~ 4.77 ECTS** Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate and adesign of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are considered to complet	Workload		-	
Credit Point 3 CU = 3 x 1.59 = 4.77 ECTS Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are consid				
Prerequisite Course(s) Quantum Chemistry Learning Outcome Students have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical). Content Empirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical). Study/Exam Achievement Students are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:			4.77 ECTS**	
Learning OutcomeStudents have the ability to communicate the results of experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components				
experiments so they are able to develop a conceptual framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction.Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment ComponentsPercentage of contribution				
framework for formulating actions or alternative actions in solving chemical problems in life. Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complet the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components	Learning Outcome	experiments so they are able to develop a conceptual		
solving chemical problems in life.Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics.Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics.Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics.Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment ComponentsPercentage of contribution				
Students skillfully use tools in determining reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components				
reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components		U		
dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components				
empirical facts that occur (deductive dimensions) in the field of reaction kinetics.Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics.Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final 				
of reaction kinetics.Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics.Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment ComponentsPercentage of contribution				
Students have knowledge of the laws of reaction rates and reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components				
reaction mechanisms based on empirical facts (inductive dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics. Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components				
dimensions) and submit theoretical arguments to explore empirical facts that occur (deductive dimensions) in the field of reaction kinetics.Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components				
empirical facts that occur (deductive dimensions) in the field of reaction kinetics.Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution				
of reaction kinetics.Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution				
Students have the ability to cooperate and are responsible for assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution		-		
assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution				
temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution		assessing the rate of reaction as a function of concentration, temperature, and catalyst as well as the legal interpretation of the reaction rate to the discussion and design of reaction		
mechanisms (including photochemical).ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components				
ContentEmpirical and theoretical studies of reaction rates as a function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio: Assessment Components				
function of concentration, temperature and catalysts and the interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution				
interpretation of the reaction rate laws to the discussion and design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution	Content			
design of reaction mechanisms (including photochemical).Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution		function of concentration, temperature and catalysts and the		
Study/Exam AchievementStudents are considered to complete the course and pass if they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution		design of reaction mechanisms (including photochemical).		
they obtain at least 40% of maximum final grade. The final grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution				
grade (NA) is calculated based on the following ratio:Assessment ComponentsPercentage of contribution	Study/Exam Achievement	they obtain at least 40% of maximum final grade. The final		
Assessment Components Percentage of contribution				
		Assessment Components	Percentage of contribution	
Participation 20%		Participation	20%	

	Assignment	30%	
	Mid-semester test	20%	
	Final semester test	30%	
Media	Computer, LCD, White board, laboratory instruments		
Learning Methods	Lectures, discussion, assignment, laboratory activity		
Literature	Wilkinson, Frank. 1936. Chemical Kinetics and Reaction		
	Mechanisms. Victoria: Van Nostrand Reinhold Company.		
	 Atkins, P. W. 1995. <i>Physical Chemistry</i>. Third Edition. New York: W. H. Freeman and Company. Castelan, Gilbert W. 1983. <i>Physical Chemistry</i>. Third Edition. Tokyo: Addison-Wesley Publishing Company. 		
	*1 CU in learning process = three periods consist of: (a)		
	scheduled instruction in a classroom or laboratory (50		
	minutes); (b) structured activ	ivity (60 minutes); and (c)	
Notes:	individual activity (60 minutes) according to the Regulation		
	of Indonesia Ministry of Research, Technology, and Higher		
	Education No. 44 Year 2015 jo. the Regulation of Indonesia		
	Ministry of Research, Technology, and Higher Education No.		
	50 Year 2018.		
	**1 CU = 1,59 ECTS according to Rector Decree Of		
	Universitas Negeri Surabaya N	o. 598/Un38/Hk/Ak/2019	