Module Handbook

Module Name	Transition Elements of Inorganic Chemistry
Module level	Bachelor
Abbreviation, if applicable	-
Sub-headings, if applicable	_
Course included in the	-
module, if applicable	
Semester / term	7th / First Year
Module coordinator (s)	Dr. Amaria, M.Si.
Lecturer (s)	Dr. Amaria, M.Si .; Prof. Dr. Sari Edi C., M.Si .; Dr. Muchlis,
	S.Pd., M.Pd .; Kusumawati D, S.Pd. M.Pd .; Rusly Hidayah,
	S.Si., M.Pd.
Language	Indonesian
Classification within the	Compulsory Course
Curriculum	
Format / class teaching	3 hours lecturers (50 min per hours)
hours per week during the	
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or
	170 minutes (50 'face to face learning, 60' structured learning,
	and 60 'independent learning). In one semester, courses are
	conducted in 14 weeks (excluding mid and end-term exam).
	Thus, 1 CU equals to 39.67 workhours per semester. One CU
Credit points:	equals to 1,587 ECTS. 3 CU (4,761 ECTS)
Prerequisites course (s):	
Targeted learning outcomes:	CLO 1 Students have the ability to utilize learning resources
Targeted learning outcomes.	and ICT to support mastery of concepts and theories of
	inorganic chemistry
	CLO 2 Students have knowledge about the basic concept of
	metal extraction, properties of physical and chemistry,
	of transition's element and compound of first, second,
	and third block d
	CLO 3 Students make decision related concept of periodic
	table properties, properties of physical and chemistry,
	of transition's element and compound of first, second,
	and third block d
	CLO 4 Students have an honest and responsible attitude in
	study inorganic chemistry concept.
Content:	1. Principles of metals extraction;
	2. Introduction of transition metals: 1. Properties of
	transition metals, 2. Size of atom and ion, 3. Ionization
	energy; 4. Magnetic properties, 5. Catalytic properties, 6.
	Stability of oxidation state level, 7. Reactivity, 8. Stability
	of complex. Complex compound and color

	3. Scandium and titanium groups: 1. General properties
	of scandium group, 2. Oxide and scandium group
	compounds, 3. extraction, properties, and using of
	scandium group, 4. General properties of titanium group,
	5. Oxide andtitanium group compounds, 3. extraction,
	properties, and using of titanium group,
	4. Vanadium group: 1. General properties of vanadium
	group, 2. Oxide and scandium group compounds, 3.
	extraction, properties, and using of scandium group
	5. Chromium group:1. General properties of chromium
	group, 2. Oxide andchromium group compounds, 3. extraction, properties, and using of chromium group
	6. Manganese group: 1. General properties of manganese
	group, 2. Oxide andmanganese group compounds, 3.
	extraction, properties, and using of manganese group
	7. Iron group:1. General property of iron group, 2. Oxide
	andiron group compounds, 3. extraction, properties, and
	using of iron group
	8. Cobalt group: 1. General properties of cobalt group, 2.
	Oxide and cobalt group compounds, 3. extraction, properties, and using of cobalt group
	9. Nickel group: 1. General properties of nickel group, 2.
	Oxide andnickel group compounds, 3. extraction,
	properties, and using of nickel group
	10. Copper group: 1. General properties of copper group, 2.
	Oxide andcopper group compounds, 3. extraction,
	properties, and using of copper group
	11. Zinc group: 1. General properties of zink group, 2. Oxide
	andzinc group compounds, 3. extraction, properties, and
	using of zinc group.
	acting of Fine Browk.
Study / exam achievements:	Students are considered to be competent and pass if at least
	get 55
	Final score is calculated as follows: 20% participation + 30%
	assignment + 20% middle exam (UTS) & 30% final exam
	(UAS)
	Table index of graduation
	• $A = 4 \ (85 \le -2100)$
	• $A = 3.75 \ (80 \le -85)$
	• $B + = 3.5 (75 \le - 80)$
	• $B = 3 (70 \le -<75)$
	• B-= 2.75 (65 ≤-<75)
	• $C + = 2.5 (60 \le -<65)$
	• $C = 2 (55 \le -<60)$
	• $D = 1 (40 \le -(55))$
	• $E = 0 \ (0 \le -40)$

Media:	Computer, LCD, White board
Learning Methods	Individuals assignment, group assignment, discussion, and
	presentation.
Literature:	1. Dina Kartika Maharani, et al. 2017. Transitional Inorganic
	Chemistry. Surabaya: Unesa University Press
	2. Madan, RD, 1997.Modern Inorganic Chemistry. New
	Delhi .: S. Chand and Company Ltd
	3. Manku, GS, 1980. Inorganic Chemistry. India: Tata Mc
	Graw Hill Book Co.
	4. Lee, JD 1991. Concise Inorganic Chemistry. Fourth
	Edition. London: Chapman & Hall
Note	Transition Elements of Inorganic Chemistry covers the
	activities of theory and presentation.