Module Handbook

Module Name	Physical Chemistry III
Module Level	Bachelor
Abbreviation, if applicable	KFIII
Sub-heading, if applicable	
Course included in the module, if applicable	
Semester/term	5 th /third year
Module coordinator(s)	Prof. Dr. Suyono, M.Pd.
Lecturer(s)	Bertha Yonata, M.Pd.
Language	Indonesian
Classification within the curriculum	Compulsory
Teaching format/class hours per week during the	3 hours lectures (50 min/hour)
semester	
Workload	3 hours lecture, 3hours structured activities, 3
	hours individual activities, 13 week a semester,
	and total 117 hours a semester~ 3.9 ECTS
Credit Point	3 SCU
Requirement	Physical Chemistry I
Learning Outcome	Students have the ability to communicate the
	results of experiments so they are able to
	develop a conceptual framework for formulating
	actions or alternative actions in solving chemical
	problems in life.
	Students skillfully use tools in determining
	reaction rates and reaction mechanisms based on
	empirical facts (inductive dimensions) and submit
	theoretical arguments to explore empirical facts
	that occur (deductive dimensions) in the field of
	reaction kinetics.
	Students have knowledge of the laws of reaction
	rates and reaction mechanisms based on
	empirical facts (inductive dimensions) and submit
	theoretical arguments to explore empirical facts
	that occur (deductive dimensions) in the field of
	reaction kinetics.
	Students have the ability to cooperate and are
	responsible for assessing the rate of reaction as a
	function of concentration, temperature, and
	catalyst as well as the legal interpretation of the
	reaction rate to the discussion and design of
	reaction mechanisms (including photochemical).
Content	Empirical and theoretical studies of reaction rates
	as a function of concentration, temperature and
	catalysts and the interpretation of the reaction
	rate laws to the discussion and design of reaction

	mechanisms (including photochemical).
Study/Exam Achievement	Students are considered to be competent and
	pass if at least get 56
	Final score is calculated as follows: 30%
	assignment, 20% middle exam (UTS) & 30% final
	exam (UAS)
	Table index of graduation
	0 - 39.99 E,
	40 - 54.99 D,
	55 - 59.99 C, 60 - 64.99 C+,
	65 - 69.99 B-,
	70 - 74.99 B,
	75 - 79.99 B+,
	80 - 84.99 A-,
	85 - 100 A.
Media	Computer, LCD, White board, laboratory
	instruments
Learning Methods	Lectures, discussion, assignment, laboratory
	activity
Literature	Wilkinson, Frank. 1936. Chemical Kinetics and
	Reaction Mechanisms. Victoria: Van Nostrand
	Reinhold Company.
	Atkins, P. W. 1995. Physical Chemistry. Third
	Edition. New York: W. H. Freeman and
	Company.
	Castelan, Gilbert W. 1983. Physical
	Chemistry. Third Edition. Tokyo: Addison-
	Wesley Publishing Company.
Note	Total ECTS = {(total hours workload x 50 min) /
	60 min } / 25 hours Each ECTS is equals with 25
	hours