MODULE HANDBOOK

Module Name	Surface Chemistry
Module level	Bachelor
Abbreviation, if applicable	8420403168
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	6 th /Third Year
Module coordinator(s)	Prof. Dr. Suyono, M.Pd.
Lecturer(s)	1. Dr. Harun Nasrudin, M.S.
	2. Bertha Yonata, S.Pd., M.Pd.
	3. Dian Novita, S.T., M.Pd.
Language	Indonesian
Classification within the	Elective Course
curriculum	
Teaching format/class	3 hours lecturers (50 min per hours)
hours per week during the	
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or
	170 minutes (50' face to face learning, 60' structured learning,
	and 60 independent learning). In one semester, courses are
	Thus 1 CU aquals to 20.67 workhours per semaster. One CU
	analy to 1.59 ECTS
Credit points:	$2 \text{ CU} = 3 \times 1.59 \text{ ECTS}$
Prerequisite course(s):	5 CO = 5 X 1.57 = 4.77 EC15
Targeted learning outcomes:	CLO1: Students have ability to communicate the analysis
Targeted learning outcomes.	results of viscosity surface tension adsorption and
	colloids so that they can develop a concentual
	framework to formulate performance or alternative
	performance in solving chemical problems in life
	CLO2 · Students have mastered to apply laboratory equipment
	for analyzing viscosity surface tension adsorption
	and colloids
	CLO 3 · Students have knowledge on surface properties of
	capillary symptoms surface thermodynamics
	adsorption surfactants detergents emulsions bases
	and aerosols, chemisorption and catalysts.
	CLO 4 · Students have the ability to work in team and
	responsible for designing implementing and
	reporting experiments results of viscosity, surface
	tension, adsorption, and colloids.
Content:	Introduction:
	Exploring the surface properties of capillary symptoms, surface
	thermodynamics, adsorption, surfactants, detergents,
	emulsions, bases and aerosols, chemisorption and catalysts
	Fluid Viscosity: Its definition and scope, types of viscometer.
	coefficient of viscosity, principle work of viscosity, how to
	measure viscosity, factors affecting viscosity

	Surface thermodynamics for surface tension: surface
	properties of fluid, surface tension, surface properties of solid
	matter,
	Properties of surface thermodynamic for adsorption:
	adsorption on the surface of the substance,
	Colloid systems and its usage in daily life: the colloids states
	in terms of particle size, types of colloids and its properties,
	kinetic properties of colloids, optical properties of colloids,
	colloid stability, colloids usage in daily life
Study / exam achievements:	Students are considered to be competent and pass if at least get
	55
	Final score is calculated as follows: 20% participation + 30%
	assignment + 20% middle exam (UTS) & 30% final exam
	(UAS)
	Table index of graduation
	• A = 4 ($85 \le -2100$)
	• A- = 3,75 (80 ≤-< 85)
	• $B+=3,5 \ (75 \le -80)$
	• B = 3 (70 $\leq -<$ 75)
	• B- = 2,75 (65 ≤-<75)
	• $C+=2,5 \ (60 \le -<65)$
	• C = 2 (55 $\leq - < 60$)
	• D = 1 (40 $\leq - < 55$)
	• $E = 0 (0 \le -40)$
Media:	Computer, LCD, White board
Learning Methods	Individuals assignment, group assignment, discussion,
	presentation, and practicum
Literature:	1. Duncan J.S. 2004. Introduction to Colloid and Surface
	Chemistry. Butter Worths
	2. Adamson dan Gost AP, 1977, Physical Chemistry of
	Surfaces 6 th ed. New York: Willey Inter Science.