MODULE HANDBOOK

Module Name	Metabolism and Pathways of Genetics Information
Module level	Bachelor
Abbreviation, if applicable	8420403034
Sub-heading, if applicable	-
Course included in the	-
module, if applicable	
Semester/term	6 th /Third Year
Module coordinator(s)	Prof. Dr. Lenny Yuanita, M.Kes
Lecturer(s)	Prof. Dr. Rudiana Agustini, M.Pd; Dr. Prima Retno Wikandari, M.Si;
	Dr. Nuniek Herdyastuti, M.Si,;
	Mirwa Adiprahara Anggarani, S.Si., M.Si
Language	Indonesian
Classification within the	Compulsory Course
curriculum	compulsory course
Teaching format/class	3 hours lecturers (50 min per hours)
hours per week during the	5 hours rectarers (50 him per hours)
semester:	
Workload:	1 CU for bachelor degree equals to 3 workhours per week or
	170 minutes (50' face to face learning, 60' structured
	learning, and 60' independent learning). In one semester,
	courses are conducted in 14 weeks (excluding mid and end-
	term exam). Thus, 1 CU equals to 39.67 workhours per
	semester. One CU equals to 1.59 ECTS.
Credit points:	3 CU = 3 x 1.59 = 4.77 ECTS
Prerequisites course(s):	-
Targeted learning outcomes:	CLO 1 Able to solve science and technology problems in
	the field general chemistry and in simple
	environments such as reporting, analysis, isolation,
	transformation, and synthesis of micromolecules,
	through the application of their structure, properties,
	molecular changes, energy and kinetics.
	CLO 2 Able to solve science and technology problems in the field of biochemistry, especially those related to
	metabolism and genetic information processing,
	based on scientific studies and analysis and synthesis
	methods, as well as the application of relevant
	technology.
	CLO 3 Have knowledge of: a) metabolism and regulation of
	carbohydrate, lipid and protein biomolecules, b)
	electron transfer processes in photosynthesis and c)
	genetic information processing.
	CLO 4 Demonstrate a responsible attitude in his work in
	learning Metabolism and Pathways of Genetics
	Information independently.
Content:	
	Metabolic aspects and their role in living cells: Macro and micro aspects of metabolism, energy cycles.
L	macro and micro aspects of metabolism, energy cycles.

	Carbohydrata Catabolism:
	Carbohydrate Catabolism:
	Glycolysis, Glycogenesis, Anaerobic reactions (Fermentation),
	citric acid cycle, Oxidative phosphorylation, ATP calculation,
	Gluconeogenesis, Glyconeogenesis, Catabolism control.
	Photosynthesis:
	Dark - light reaction, Calvin Cycle, Cycle Hatch – Slack
	Amino acid and purine catabolism - Pyrimidines:
	Intermediate pathways for amino acid catabolism,
	transaminase reactions, ammonothelic, oreothelic, and
	uricotelic nitrogen secretion pathways, urea cycle. Synthesis of
	amino acids from ammonium through 3 enzymatic reactions
	and its regulation, synthesis of amino acids from the reaction of
	glutamate transaminases with α -keto acid, degradation and
	synthesis of purines – pyrimidines.
	Lipid Catabolism:
	Saturated fatty acid catabolism, unsaturated fatty acid
	catabolism, and oxidation, ketogenesis and control.
	Lipogenesis, anabolism in specific fats and control.
	Genetic Information Flow: Replication, Transcription,
	Translation and Lac Operon.
Study / exam achievements:	Students are considered to be competent and pass if at least
	get 55
	Final score is calculated as follows: 20% participation + 30%
	assignment + 20% middle exam (UTS) & 30% final exam
	(UAS)
	Table index of graduation
	• $A = 4 (85 \le -2100)$
	• $A = 3,75 (80 \le 85)$
	• $B + = 3,5 (75 \le - < 80)$
	• B = 3 (70 $\leq -<75$)
	• $B = 2,75 (65 \le -375)$
	• $C + = 2,5 (60 \le -(65))$
	• $C = 2(55 \le -(60))$
	• $D = 1 (40 \le -(55))$
	• $D = 1 (40 \le -33)$ • $E = 0 (0 \le -40)$
Media:	
	Computer, LCD, White board
Learning Methods	Individuals assignment, group assignment, discussion,
Literature	presentation
Literature:	1. Ayala, F.J. and Kieger, J.A. 1984. <i>Modern Genetics</i> .
	California: The Benyamin Cummings Publishing
	Company Inc.
	2. Koolman, J. and Roehm, K.H. 2005. Color Atlas of
	<i>Biochemistry</i> . 2 nd edition. New York: Stutgard.
	3. Lehninger. 1988. Dasar-Dasar Biokimia (I,II,III).
	Jakarta: Erlangga.
	4. Mathew, C.K., van Holde, K.E., Ahern, K.G. 1999.
	<i>Biochemistry</i> . San Fransisco: Addison-Wesley Pub. Co.
	5. Murray R.K., Granner R.K., Mayes P.A., and Rotwell
	V.W. 2003. Harper's Ilustrated Biochemistry, The
	McGraw-Hill Companies

6. Nelson, D.L. and Cox, M.M. 2003. <i>Lehninger Principle</i> of Biochemistry. 4th edition. Madison: University of
Winconsin.
7. Styer, L., 1988. Biochemistry. New York: W.H.
Freeman and Company